首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
AimTo evaluate the target dose coverage for lung stereotactic body radiotherapy (SBRT) using helical tomotherapy (HT) with the internal tumor volume (ITV) margin settings adjusted according to the degree of tumor motion.BackgroundLung SBRT with HT may cause a dosimetric error when the target motion is large.Materials and methodsTwo lung SBRT plans were created using a tomotherapy planning station. Using these original plans, five plans with different ITV margins (4.0–20.0 mm for superior-inferior [SI] dimension) were generated. To evaluate the effects of respiratory motion on HT, an original dynamic motion phantom was developed. The respiratory wave of a healthy volunteer was used for dynamic motion as the typical tumor respiratory motion. Five patterns of motion amplitude that corresponded to five ITV margin sizes and three breathing cycles of 7, 14, and 28 breaths per minute were used. We evaluated the target dose change between a static delivery and a dynamic delivery with each motion pattern.ResultsThe target dose difference increased as the tumor size decreased and as the tumor motion increased. Although a target dose difference of <5 % was observed at ≤10 mm of tumor motion for each condition, a maximum difference of -9.94 % ± 7.10 % was observed in cases of small tumors with 20 mm of tumor motion under slow respiration.ConclusionsMinimizing respiratory movement is recommended as much as possible for lung SBRT with HT, especially for cases involving small tumors.  相似文献   

2.
PurposeTo develop and validate a variable angle stereo image based position correction methodology in an X-ray based in-house online position monitoring system.Materials and methodsA stereo imaging module that enables 3D position determination and couch correction of the patient based on images acquired at any arbitrary angle and arbitrary angular separation was developed and incorporated to the in-house SeedTracker real-time position monitoring system. The accuracy of the developed system was studied by imaging an anthropomorphic phantom implanted with radiopaque markers set to known offset positions from its reference position in an Elekta linear accelerator (LA) and associated XVI imaging system. The accuracy of the system was further validated using CBCT data set from 10 prostate SBRT patients. The time gains achieved with the stereo image based position correction was compared with the manual matching of seed positions in Digitally Reconstructed Radiographs (DRRs) and kV images in the Mosaiq record and verify system.ResultsBased on phantom and patient CBCT dataset study stereo imaging module implemented in the SeedTracker shown to have an accuracy of 0.1(σ = 0.5) mm in detecting the 3D position offset. The time comparison study showed that stereo image based methodology implemented in SeedTracker was a minimum of 80(4) s faster than the manual method implemented in Mosaiq R&V system with a maximum time saving of 146(6) s.ConclusionThe variable angle stereo image based position correction method was shown to be accurate and faster than the standard manual DRR–kV image based correction approach, leading to more efficient treatment.  相似文献   

3.
AimPatient setup errors were aimed to be reduced in radiotherapy (RT) of head-and-neck (H&N) cancer. Some remedies in patient setup procedure were proposed for this purpose.BackgroundRT of H&N cancer has challenges due to patient rotation and flexible anatomy. Residual position errors occurring in treatment situation and required setup margins were estimated for relevant bony landmarks after the remedies made in setup process and compared with previous results.Materials and methodsThe formation process for thermoplastic masks was improved. Also image matching was harmonized to the vertebrae in the middle of the target and a 5 mm threshold was introduced for immediate correction of systematic errors of the landmarks. After the remedies, residual position errors of bony landmarks were retrospectively determined from 748 orthogonal X-ray images of 40 H&N cancer patients. The landmarks were the vertebrae C1–2, C5–7, the occiput bone and the mandible. The errors include contributions from patient rotation, flexible anatomy and inter-observer variation in image matching. Setup margins (3D) were calculated with the Van Herk formula.ResultsSystematic residual errors of the landmarks were reduced maximally by 49.8% (p  0.05) and the margins by 3.1 mm after the remedies. With daily image guidance the setup margins of the landmarks were within 4.4 mm, but larger margins of 6.4 mm were required for the mandible.ConclusionsRemarkable decrease in the residual errors of the bony landmarks and setup margins were achieved through the remedies made in the setup process. The importance of quality assurance of the setup process was demonstrated.  相似文献   

4.
AimTo discuss current dosage for stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) patients and suggest alternative treatment strategies according to liver segmentation as defined by the Couinaud classification.BackgroundSBRT is a safe and effective alternative treatment for HCC patients who are unable to undergo liver ablation/resection. However, the SBRT fractionation schemes and treatment planning strategies are not well established.Materials and methodsIn this article, the latest developments and key findings from research studies exploring the efficacy of SBRT fractionation schemes for treatment of HCC are reviewed. Patients’ characteristics, fractionation schemes, treatment outcomes and toxicities were compiled. Special attention was focused on SBRT fractionation approaches that take into consideration liver segmentation according to the Couinaud classification and functional hepatic reserve based on Child–Pugh (CP) liver cirrhosis classification.ResultsThe most common SBRT fractionation schemes for HCC were 3 × 10–20 Gy, 4–6 × 8–10 Gy, and 10 × 5–5.5 Gy. Based on previous SBRT studies, and in consideration of tumor size and CP classification, we proposed 3 × 15–25 Gy for patients with tumor size <3 cm and adequate liver reserve (CP-A score 5), 5 × 10–12 Gy for patients with tumor sizes between 3 and 5 cm or inadequate liver reserve (CP-A score 6), and 10 × 5–5.5 Gy for patients with tumor size >5 cm or CP-B score.ConclusionsTreatment schemes in SBRT for HCC vary according to liver segmentation and functional hepatic reserve. Further prospective studies may be necessary to identify the optimal dose of SBRT for HCC.  相似文献   

5.
AimTo investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours.BackgroundIn the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment.Materials and methodsData were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment.ResultsThe mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes.ConclusionsMore caution and an additional safety margins are required when tracking a single fiducial marker.  相似文献   

6.
AimThe aim was to find an optimal setup image matching position and minimal setup margins to maximally spare the organs at risk in breast radiotherapy.BackgroundRadiotherapy of breast cancer is a routine task but has many challenges. We investigated residual position errors in whole breast radiotherapy when orthogonal setup images were matched to different bony landmarks.Materials and methodsA total of 1111 orthogonal setup image pairs and tangential field images were analyzed retrospectively for 50 consecutive patients. Residual errors in the treatment field images were determined by matching the orthogonal setup images to the vertebrae, sternum, ribs and their compromises. The most important region was the chest wall as it is crucial for the dose delivered to the heart and the ipsilateral lung. Inter-observer variation in online image matching was investigated.ResultsThe best general image matching position was the compromise of the vertebrae, ribs and sternum, while the worst position was the vertebrae alone (p  0.03). The setup margins required for the chest wall varied from 4.3 mm to 5.5 mm in the lung direction while in the superior–inferior (SI) direction the margins varied from 5.1 mm to 7.6 mm. The inter-observer variation increased the minimal margins by approximately 1 mm. The margin of the lymph node areas should be at least 4.8 mm.ConclusionsSetup margins can be reduced by proper selection of a matching position for the orthogonal setup images. To retain the minimal margins sufficient, systematic error of the chest wall should not exceed 4 mm in the tangential field image.  相似文献   

7.
AimTo determine the setup reproducibility in the radiation treatment of Head and Neck (HN) patients using open face head and shoulder masks (OHSM) with customized headrest (CHR) versus standard closed head and shoulder masks (CHSM) and to determine the patient’s level of comfort and satisfaction for both masks.MethodsForty patients were prospectively randomized into two groups using simple random sampling. Group 1 was assigned with CHSMs, immobilized with a standard HR (SHR) while Group 2 was assigned with OHSMs, and immobilized with CHR. Cone beam computed tomography (CBCT) was taken the first 3 days, followed by weekly CBCT (prior treatment) with results registered to the planning CT to determine translational and rotational inter-fraction shifts and to verify accuracy. Mean (M) and standard deviation (SD) of the systematic and random setup errors of the 2 arms in the translational and rotational directions were analyzed, using Independent t-test and Mann–Whitney U test. Patient comfort was measured using a Likert questionnaire.ResultsThe vertical, lateral, longitudinal and Z/roll rotational shifts were not significantly different between the two masks. X/yaw and Y/pitch rotational shifts were significantly greater in Group 2 versus Group 1, for both systematic (p = 0.009 and 0.046, respectively) and random settings (p = 0.016 and 0.020) but still within three degrees. Patients reported higher neck and shoulder comfort (p = 0.020) and overall satisfaction (p = 0.026) using the OHSM with the CHR versus the CHSM with the SHR during CT simulation.ConclusionOpen masks provide comparable yet comfortable immobilization to closed masks for HN radiotherapy.  相似文献   

8.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

9.
Voluntary moderate deep inspiration breath hold (vmDIBH) in left-sided breast cancer radiotherapy reduces cardiac dose. The aim of this study was to investigate heart position variability in vmDIBH using CBCT and to compare this variability with differences in heart position between vmDIBH and free breathing (FB).For 50 patients initial heart position with respect to the field edge (HP-FE) was measured on a vmDIBH planning CT scan. Breath-hold was monitored using an in-house developed vertical plastic stick. On pre-treatment CBCT scans, heart position variability with respect to the field edge (ΔHP-FE) was measured, reflecting heart position variability when using an offline correction protocol. After registering the CBCT scan to the planning CT, heart position variability with respect to the chest wall (ΔHP-CW) was measured, reflecting heart position variability when using an online correction protocol. As a control group, vmDIBH and FB computed tomography (CT) scans were acquired for 30 patients and registering both scans on the chest wall.For 34 out of 50 patients, the average HP-FE and HP-CW increased over the treatment course in comparison to the planning CT. Averaged over all patients and all treatment fractions, the ΔHP-FE and the ΔHP-CW was 0.8 ± 4.2 mm (range −9.4–+10.6 mm) and 1.0 ± 4.4 mm (range −8.3–+10.4 mm) respectively. The average gain in heart to chest wall distance was 11.8 ± 4.6 mm when using vmDIBH instead of FB. In conclusion, substantial variability in heart position using vmDIBH was observed during the treatment course.  相似文献   

10.

Aim and background

IGRT based on bone matching may produce a large target positioning error in terms of the reproducibility of expiration breath-holding on SBRT for liver cancer. We evaluated the intrafractional and interfractional errors using the diaphragm position at the end of expiration by utilising Abches and analysed the factor of the interfractional error.

Materials and methods

Intrafractional and interfractional errors were measured using a couple of frontal kV images, planning computed tomography (pCT) and daily cone-beam computed tomography (CBCT). Moreover, max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT were calculated.

Results

The mean ± SD (standard deviation) of the intra-fraction diaphragm position variation in the frontal kV images was 1.0 ± 0.7 mm in the C-C direction. The inter-fractional diaphragm changes were 0.4 ± 4.6 mm in the C-C direction, 1.4 ± 2.2 mm in the A-P direction, and ?0.6 ± 1.8 mm in the L-R direction. There were no significant differences between the maximum value of the max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT.

Conclusions

Residual intrafractional variability of diaphragm position is minimal, but large interfractional diaphragm changes were observed. There was a small effect in the patient condition difference between pCT and CBCT. The impact of the difference in daily breath-holds on the interfractional diaphragm position was large or the difference in daily breath-holding heavily influenced the interfractional diaphragm change.  相似文献   

11.
PurposeTo show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system.MethodsA method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images.ResultsCompared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0 ± 1.1 mm, −1.1 mm ± 1.1, and −0.1 ± 2.2 mm, respectively, in the lateral, longitudinal, and vertical directions.ConclusionsWith dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.  相似文献   

12.
PurposeThe aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions.MethodsAll lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC). All institutions used the same secondary check program (simple MU analysis [SMU]) implemented by a Clarkson-based dose calculation algorithm. Measurement was performed in a heterogeneous phantom to compare doses using the three different algorithms and the SMU for the measurements. A retrospective analysis was performed to compute the confidence limit (CL; mean ± 2SD) for the dose deviation between the AAA, PBC, AC and SMU. The variations between the AAA and AXB were evaluated in two institutions, then the CL was acquired.ResultsIn comparing the measurements, the AAA showed the largest systematic dose error (3%). In calculation comparisons, the CLs of the dose deviation were 8.7 ± 9.9% (AAA), 4.2 ± 3.9% (PBC-B) and 5.7 ± 4.9% (AC). The CLs of the dose deviation between the AXB and the AAA were 1.8 ± 1.5% and −0.1 ± 4.4%, respectively, in the two institutions.ConclusionsThe CL of the AAA showed much larger variation than the other algorithms. Relative to the AXB, larger systematic and random deviations still appeared. Thus, care should be taken in the use of AAA for lung SBRT.  相似文献   

13.
PurposeHigh precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans.Methods and materialPreliminary evaluation consisted of beam profile validation and analysis of source–detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference  2%, distance-to-agreement  2 mm, pass-rate  90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1 mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions.ResultsThe 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10 cm source–detector-distance change, but remains within 1% for the clinically relevant source–detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1 mm distance-to-agreement criterion while 2 mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria.ConclusionWe demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source–detector-distance response.  相似文献   

14.
AimDescribe the anatomical changes and tumor displacement due to a rapid response of a patient’s small cell lung cancer (SCLC) during definitive chemoradiotherapy (CRT).BackgroundThe treatment for SCLC is based on CRT. If interfractional changes during RT are incorrectly assessed they might compromise adequate coverage of the tumor or increase dose to organs at risk. Image guided RT with cone-beam computed tomography (CBCT) allows to identify daily treatment variations.Material and methodsDescribe a SCLC case with rapid changes in size, shape and location of the primary tumor during RT.Case reportA 62-year-old woman was diagnosed with SCLC with complete obstruction of the anterior and lingular bronchi and incomplete left thorax expansion due to a 12 × 15 cm mass. During CRT (45 Gy in 1.5 Gy per fraction, twice daily) the patient presented rapid tumor response, leading to resolution of bronchi obstruction and hemithorax expansion. Tumor shifted up to 4 cm from its original position. The identification of variations led to two new simulations and planning in a 3-week treatment course.ConclusionsThe complete radiological response was possible due to systematic monitoring of the tumor during CRT. We recommend frequent on-site image verification. Daily CBCT should be considered with pretreatment tumor obstruction, pleural effusion, atelectasis, large volumes or radiosensitive histology that might resolve early and rapidly and could lead to a miss of the tumor or increased toxicity. Further research should be made in replanning effect in coverage of microscopic disease since it increases uncertainty in this scenario.  相似文献   

15.
PurposeTo verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.MethodsA total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.ResultsAXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.ConclusionsThis study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.  相似文献   

16.
PurposeThe log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error.Methods and materialsModified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5 mm in opposite directions and systematic leaf shifts: ±1.0 mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks.ResultsFor MLC leaves calibrated within ±0.5 mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32 ± 0.27% and 0.82 ± 0.17 Gy for PTV and spinal cord, respectively, and in prostate plans 1.22 ± 0.36%, 0.95 ± 0.14 Gy, and 0.45 ± 0.08 Gy for PTV, rectum, and bladder, respectively.ConclusionsIn this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy.  相似文献   

17.
AimTo assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction.BackgroundImplementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution.Materials and methodsSeventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed.ResultsIn 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively.ConclusionSufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.  相似文献   

18.
19.
PurposeEPID-based in vivo dosimetry (IVD) has been implemented for stereotactic body radiotherapy treatments of non-small cell lung cancer to check both isocenter dose and the treatment reproducibility comparing EPID portal images.Methods15 patients with lung tumors of small dimensions and treated with volumetric modulated arc therapy were enrolled for this initial experience. IVD tests supplied ratios R between in vivo reconstructed and planned isocenter doses. Moreover a γ-like analysis between daily EPID portal images and a reference one, in terms of percentage of points with γ-value smaller than 1, Pγ<1, and mean γ-values, γmean, using a local 3%–3 mm criteria, was adopted to check the treatment reproducibility. Tolerance levels of 5% for R ratio, Pγ<1 higher than 90% and γmean lower than 0.67 were adopted.ResultsA total of 160 EPID images, two images for each therapy session, were acquired during the treatment of the 15 patients. The overall mean of the R ratios was equal to 1.005 ± 0.014 (1 SD), with 96.9% of tests within ± 5%. The 2 D image γ-like analysis showed an overall γmean of 0.39 ± 0.12 with 96.1% of tests within the tolerance level, and an average Pγ<1 value equal to 96.4 ± 3.6% with 95.4% of tests with Pγ<1 > 90%. Paradigmatic discrepancies were observed in three patients: a set-up error and a patient morphological change were identified thanks to CBCT image analysis whereas the third discrepancy was not fully justified.ConclusionsThis procedure can provide improved patient safety as well as a first step to integrate IVD and CBCT dose recalculation.  相似文献   

20.
PurposeTo evaluate the respiratory motion of adrenal gland metastases in three-dimensional directions using four-dimensional computed tomography (4DCT) images.MethodsFrom January 2013 to May 2016, 12 patients with adrenal gland metastases were included in this study. They all underwent 4DCT scans to assess respiratory motion of adrenal gland metastases in free breathing state. The 4DCT images were sorted into 10 image series according to the respiratory phase from the end inspiration to the end expiration, and then transferred to FocalSim workstation. All gross tumor volumes (GTVs) of adrenal gland metastases were drawn by a single physician and confirmed by a second. Relative coordinates of adrenal gland metastases were automatically generated to calculate adrenal gland metastases motion in different axial directions.ResultsThe average respiratory motion of adrenal gland metastases in left-right (LR), cranial-caudal (CC), anterior-posterior (AP), 3-dimensional (3D) vector directions was 3.4 ± 2.2 mm, 9.5 ± 5.5 mm, 3.8 ± 2.0 mm and 11.3 ± 5.3 mm, respectively. The ratios were 58.6% ± 11.4% and 63.2% ± 12.5% when the volumes of GTVIn0% and GTV In100% were compared with volume of IGTV10phase. The volume ratio of IGTV10phase to GTV3D was 1.73 ± 0.48.ConclusionsAdrenal gland metastasis is a respiration-induced moving target, and an internal target volume boundary should be provided when designing the treatment plan. The CC motion of adrenal gland metastasis is predominant and >5 mm, thus motion management strategies are recommended for patients undergoing external radiotherapy for adrenal gland metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号