首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the southeast of the Qinghai-Tibetan Plateau of China, Mono Maple is a common species in reforestation processes. The paper mainly investigated the changes in morphological, photosynthetic and physiological responses of Mono Maple seedlings to UV-B radiation, nitrogen supply and their combination. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2 a−1)—to determine whether the adverse effects of UV-B on plants are eased by nitrogen supply. Enhanced UV-B caused a marked decline in growth parameters, net photosynthetic rate, and photosynthetic pigments, whereas it induced an increase in reaction oxygen species (hydrogen peroxide accumulation and the rate of superoxide radical production) and malondialdehyde content. Enhance UV-B also induced an increase in antioxidant compounds of Mono Maple, such as UV-B absorbing compounds, proline content, and activities of antioxidant enzymes (peroxidase, superoxide dimutase and catalase). On the other hand, nitrogen supply caused an increase in some growth parameters, net photosynthetic rate, photosynthetic pigments and antioxidant compounds (peroxidase, proline content and UV-B absorbing compounds), and reduced the content of reaction oxygen species (H2O2 accumulation, the rate of O2production) and malondialdehyde content under ambient UV-B. However, under enhanced UV-B, nitrogen supply inhibited some growth parameters, and increased H2O2 accumulation, the rate of O2production and MDA content, though proline content, UV-B absorbing compounds and activities of POD and SOD increased. These results implied that enhanced UV-B brought harmful effects on Mono Maple seedlings and nitrogen supply made plants more sensitive to enhanced UV-B, though increased some antioxidant activity.  相似文献   

2.
Enhanced ultraviolet-B radiation (UV-B, 280?C320?nm) is recognized as one of the environmental stress factors that cannot be neglected. Jasmonic acid (JA) is an important signaling molecule in a plant??s defense against biotic and abiotic stresses. To determine the role of exogenous JA in the resistance of wheat to stress from UV-B radiation, wheat seedlings were exposed to 0.9?kJ?m?2?h?1 UV-B radiation for 12?h after pretreatment with 1 and 2.5?mM JA, and the activity of antioxidant enzymes, the level of malondialdehyde (MDA), the content of UV-B absorbing compounds, photosynthetic pigments, and proline and chlorophyll fluorescence parameters were measured. The results of two-way ANOVA illustrated that the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), MDA level, anthocyanin and carotenoid (Car) content, and almost all chlorophyll fluorescence parameters were significantly affected by UV-B, JA, and UV-B?×?JA (P?<?0.05) [the maximal efficiency of photosystem II photochemistry (F v/F m) was not affected significantly by UV-B radiation]. Duncan??s multiple-range tests demonstrated that UV-B stress induced a significant reduction in plant photosystem II (PSII) function and SOD activity and an increased level of membrane lipid peroxidation, indicative of the deleterious effect of UV-B radiation on wheat. JA pretreatment obviously mitigated the detrimental effect of UV-B on PSII function by increasing F v/F m, reaction centers?? excitation energy capture efficiency (F v??/F m??), effective photosystem II quantum yield (??PSII), and photosynthetic electron transport rate (ETR), and by decreasing nonphotochemical quenching (NPQ) of wheat seedlings. Moreover, the activity of SOD and the content of proline and anthocyanin were provoked by exogenous JA. However, the MDA level was increased and Car content was decreased by exogenous JA with or without the presence of supplementary UV-B, whereas the contents of chlorophyll and flavonoids and related phenolics were not affected by exogenous JA. Meanwhile, exogenous JA resulted in a decrease of CAT and POD activities under UV-B radiation stress. These results partly confirm the hypothesis that exogenous JA could counteract the negative effects of UV-B stress on wheat seedlings to some extent.  相似文献   

3.
Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.  相似文献   

4.
The objective of the present study was to determine the influence of potassium deprivation on the halophyte species Hordeum maritimum grown in hydroponics for 2 weeks. Treatments were with potassium (+K) or without potassium (−K). Growth, water status, mineral nutrition, parameters of oxidative stress [malondialdehyde (MDA), carbonyl groups (C=O), and hydrogen peroxide concentration (H2O2) contents], antioxidant enzyme activities [superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate peroxidase (MDHAR, EC 1.6.5.4), dehydroascorbate peroxidase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2)], and antioxidant molecules [ascorbate (ASC), and glutathione (GSH)] were determined. Results showed that the growth of vegetative organs decreased owing to potassium deficiency with roots (−36%) more affected than shoots (−12%). Water status was only diminished in roots (reduction of 24%). Potassium deprivation decreased potassium concentration in both organs, this decrease was more pronounced in roots (−81%) than in shoots (−55%). In contrast to carbonyl groups, MDA content increased owing to potassium deprivation. Except for CAT activity that remained unaffected; SOD, GPX, APX, GR, MDHAR, and DHAR activities were significantly increased. H2O2 concentration was negatively correlated with the activities of enzymes and the accumulation of non-enzymatic antioxidants implicated in its detoxification. In conclusion, a cooperative process between the antioxidant systems is important for the tolerance of H. maritimum to potassium deficiency.  相似文献   

5.
The effects of exogenous salicylic acid (SA), sodium nitropusside (SNP, a nitric oxide donor), or their combination on dwarf polish wheat (Triticum polonicum L.) seedlings under UV-B stress were studied. The UV-B stress significantly decreased plant height, shoot dry mass, pigment content, net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, and variable to maximum chlorophyll fluorescence ratio (Fv/Fm) in all plants, but less in the presence of SA, SNP, and their combination. On the other hand, there were considerable increases in malondialdehyde (MDA), proline, O2 ?-, and H2O2 content under the UV-B stress. When SA, SNP, and their combination were applied, content of MDA, proline, H2O2, and O2 ?- were less increased. Moreover, there were considerable increases in activities of superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase under the UV-B stress and more in the presence of SA, SNP, and their combination. Therefore, it is considered that SA, SNP, and especially their combination could alleviate UV-B stress in dwarf polish wheat.  相似文献   

6.
干旱胁迫下黄土高原4种乡土禾草抗氧化特性   总被引:5,自引:0,他引:5  
单长卷  韩蕊莲  梁宗锁 《生态学报》2012,32(4):1174-1184
采用盆栽实验,对干旱胁迫下黄土高原4种乡土禾草冰草、长芒草、无芒隐子草和白羊草叶片过氧化氢(H2O2)、丙二醛(MDA)含量、抗氧化酶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽过氧化物酶(GPX)活性和非酶抗氧化物质还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、类胡萝卜素(Car)含量进行了测定。 结果表明:随着干旱胁迫程度的加剧,4种乡土禾草叶片H2O2、MDA含量均呈增加趋势,这说明它们均遭受了干旱所造成的氧化胁迫,且干旱程度越大其遭受的氧化胁迫也越大。由于4种乡土禾草均为禾本科植物并生存于相同的生态环境中,它们在抗氧化特性上具有一定共性。在60%FC和45%FC干旱胁迫下,4种乡土禾草均可以通过增加抗氧化酶SOD、CAT、APX、GR、DHAR、MDHAR、GPX活性和非酶抗氧化物质AsA含量来抵御干旱所造成的氧化胁迫。由于种属差异,4种乡土禾草的抗氧化特性也存在差异。在60%FC和45%FC干旱胁迫下,冰草、无芒隐子草和白羊草还通过增加非酶抗氧化物质Car含量增强抗氧化能力,长芒草和白羊草则还可通过增加POD活性抵御干旱。在60%FC干旱胁迫下,冰草还可通过增加非酶抗氧化物质GSH含量提高其抗氧化性。采用隶属函数法对4种乡土草种抗氧化能力的综合评价表明,冰草的抗氧化能力最强,其次为无芒隐子草和白羊草,长芒草的抗氧化能力最差。  相似文献   

7.
Liu M L  Cao B  Zhou S H  Liu Y B 《农业工程》2012,32(3):150-155
Caryopteris mongolica is a dwarf shrub mainly found in grassland and desert areas of north-west China, and which can survive severe environmental stress. This study aimed to assess the responses of the flavonoid pathway to UV-B radiation treatments and its correlation to the lipid peroxide and antioxidant systems in C. mongolica. In UV-B radiation experiments, plants were exposed to UV-B radiation treatments with a intensity of 30 J/s for 1, 4 and 24 h, respectively. A control group without UV-B radiation treatment was also used. The chlorophyll fluorescence parameters, contents of chlorophyll and carotenoid, levels of lipid peroxidation, activities of antioxidant system enzymes, accumulations of total flavonoids and anthocyanins, and activities of phenylalanine ammonialyase (PAL) and chalcone isomerase (CHI) under different UV-B radiation treatments were investigated. The correlations between products and key enzymes in the flavonoid pathway and the lipid peroxide and antioxidant systems were also analyzed. The results showed that chlorophyll fluorescence parameters decreased within 24 h of treatment. The chlorophyll contents decreased within 4 h and remained stable after 24 h. Carotenoid content significantly increased. The level of MDA, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD) and the contents of total flavonoids and anthocyanidins increased, while catalase (CAT) activity decreased under UV-B stress. The activities of PAL and CHI also increased with the increased content of total flavonoids. The flavonoid products anthocyanidins had a significant positive correlation with MDA level, as well as the activities of antioxidant enzyme SOD. In conclusion, UV-B radiation induced the degradation of photosynthetic pigments and decreased photochemical efficiency of Photosystem II; increased the contents of MDA, total flavonoids and anthocyanidins; and also enhanced activities of antioxidant enzymes (SOD, APX and POD) and key enzymes (PAL and CHI) in the flavonoid pathway in C. mongolica. Thus, we speculate that the flavonoid pathway were involved in the regulation of stress resistance in C. mongolica.  相似文献   

8.
Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h–180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h–180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase), ascorbate peroxidase (APX) activity and reduced ascorbate (ASC) content. On the contrary, fasted fish could not activate many of these protective systems and rely mainly on CAT and ASC dependent pathways as antioxidative sentinels. The present findings exemplify that in fed fish single factors and a combination of HEA exposure and reduced seawater salinities (upto 10 ppt) were insufficient to cause oxidative damage due to the highly competent antioxidant system compared to fasted fish. However, the impact of HEA exposure at a hypo-saline environment (2.5 ppt) also defied antioxidant defence system in fed fish, suggesting this combined factor is beyond the tolerance range for both feeding groups. Overall, our results indicate that the oxidative stress mediated by the experimental conditions were exacerbated during starvation, and also suggest that feed deprivation particularly at reduced seawater salinities can instigate fish more susceptible to ammonia toxicity.  相似文献   

9.
Crested wheatgrass (Agropyron cristatum L.) is a cool-season perennial grass, which has demonstrated its potential for use as turfgrass. However, limited information is available on its drought and salinity tolerance. The main purpose of this study was to investigate the changes in the antioxidant defence system and physiological traits of six Iranian crested wheatgrass genotypes under drought and salinity stresses. The experimental design comprised a split plot with water treatments (control well-watered, salinity stress and water stress) as main plots and genotypes as subplots. This study demonstrated the variations in drought and salinity tolerance among crested wheatgrass genotypes. ‘ACSKI’, ‘ACAMI’ and ‘ACDTI’ generally performed better than other genotypes under drought and salinity conditions, mainly by maintaining higher activities of antioxidant enzymes like superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and non-enzyme antioxidants like glutathione, higher proline and total non-structural carbohydrates content. The increased, decreased, and unchanged activities of antioxidant enzymes in the crested wheatgrass genotypes indicates a different forms of metabolism of antioxidant enzymes in response to drought and salinity stress. In general, drought and salinity stress increases the malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content; however, ‘ACSKI’, ‘ACAMI’ and ‘ACDTI’ genotypes could tolerate an increase in MDA content and H2O2 content; therefore, lower levels of MDA content and H2O2 content were observed. The results showed that increasing levels of diamine oxidase and polyamine oxidase have been associated with increasing drought and salinity tolerance. Based on the biochemical and physiological parameters that were evaluated, we concluded that the genotype ‘ACSKI’ was superior in terms of drought and salinity tolerance. This superiority was mainly a result of better enzymatic and non-enzymatic antioxidant defence system and better osmotic adjustment under stress conditions.  相似文献   

10.
采用施加氮肥和人工控水的方法,以一年生刺槐幼苗为材料进行盆栽实验,探讨提高土壤氮素含量对不同土壤水分条件下刺槐幼苗叶片中活性氧产生和清除的影响。结果表明:(1)相同氮素水平下,降低土壤水分含量引起刺槐生物量和叶片光合色素含量降低,而过氧化氢(H2O2)含量升高;抗氧化酶系统中的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性和过氧化氢酶(CAT)活性不同程度降低;抗氧化剂中抗坏血酸(ASA)含量和还原型谷胱甘肽(GSH)含量均有所提高;MDA含量逐渐升高,而同期细胞膜相对电导率显著升高。(2)相同水分条件下,提高土壤氮素水平显著提高了刺槐幼苗叶片光合色素含量,同时也一定程度提高了总生物量,显著降低了H2O2含量;SOD、POD和CAT活性不同程度升高;ASA含量和GSH含量则表现出不同程度下降;相对电导率显著降低同时MDA含量一定程度降低。因此,增加土壤氮素有效性可显著提高刺槐幼苗叶片光合色素含量,显著抑制活性氧的产生,一定程度提高总生物量和抗氧化酶活性,降低膜脂过氧化程度,从而有利于缓解干旱引起的伤害。  相似文献   

11.
The combined drought and salinity stresses pose a serious challenge for crop production, but the physiological mechanisms behind the stresses responses in wheat remains poorly understood. Greenhouse pot experiment was performed to study differences in genotype response to the single and combined (D + S) stresses of drought (4% soil moisture, D) and salinity (100 mM NaCl, S) using two wheat genotypes: Jimai22 (salt tolerant) and Yangmai20 (salt‐sensitive). Results showed that salinity, drought and/or D + S severely reduces plant growth, biomass and net photosynthetic rate, with a greater effect observed in Yangmai20 than Jimai22. A notable improvement in water use efficiency (WUE) by 239, 77 and 103% under drought, salinity and D + S, respectively, was observed in Jimai22. Moreover, Jimai22 recorded higher root K+ concentration in drought and salinity stressed condition and shoot K+ under salinity alone than that of Yangmai20. Jimai22 showed lower increase in malondialdehyde (MDA) accumulation, but higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and guaicol peroxidase (POD, EC 1.11.1.7), under single and combined stresses, and catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) under single stress. Our results suggest that high tolerance of Jimai22 in both drought and D + S stresses is closely associated with larger root length, higher Fv/Fm and less MDA contents and improved capacity of SOD and POD. Moreover, under drought Jimai22 tolerance is firmly related to higher root K+ concentration level and low level of Na+, high‐net photosynthetic rate and WUE as well as increased CAT and APX activities to scavenge reactive oxygen species.  相似文献   

12.
Plant exhibits various patterns of survival under salinity and their growth and development depend on their capacity to overcome the stress. Present investigation was focused on the response and regulation of the antioxidant defense system and the level of lipid peroxidation in Panicum miliacium and Panicum sumatrense under salt treatments. NaCl stress was imposed for 20 days after sowing of two Panicum species. The changes in the antioxidant enzyme activity like superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) were recorded in both Panicum species. A great correlation exists between the antioxidant enzymes and lipid peroxidation. The defense mechanism activated in Panicum species studied was confirmed by the increased antioxidant enzyme activities under progressive NaCl stress. MDA content remained close to control at moderate NaCl concentrations and increased at higher salinities. Although lipid peroxidation increased in both Panicum species under salt stress the percent of increase was low in P. sumatrense indicating its salt-tolerant nature. Another possible conclusion is that improved tolerance to salt stress may be accomplished by increased capacity of antioxidative system.  相似文献   

13.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

14.
The changes in accumulation of two potential osmoprotectants (proline and glycine betaine), lipid peroxidation appraised as malondialdehyde (MDA) level, activities of key antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POD: EC 1.11.1.7), and glutathione reductase (GR: EC 1.6.4.2), and soluble protein profile in two cultivars of mulberry (S146 and Sujanpuri) differing in alkalinity (NaHCO3) tolerance were investigated at 2-month intervals up to 6-month growth under stress conditions. Varying levels of salinity–alkalinity developed in soil were 0, 30, 40, and 50 g of NaHCO3 kg?1 soil with pH 7.8, 9.1, 9.8, and 10.3, respectively. Alkali stress led to a consistent accumulation of proline and glycine betaine in mulberry leaves with time. The activities of leaf SOD, CAT, POD, and GR increased with increase in external salt concentration and pH. The increase in antioxidant enzyme activities was higher in cv. S146 than cv. Sujanpuri, whereas rate of lipid peroxidation measured in terms of MDA was higher in cv. Sujanpuri as compared to cv. S146. Protein profile revealed that some unknown proteins of low molecular mass (10–32.5 kDa) were induced by NaHCO3 stress, but differently in two cultivars.  相似文献   

15.
Soil flooding is a seasonal factor that negatively affects plant performance and crop yields. In order to investigate the effects of spermidine (Spd) and spermine (Spm) on the waterlogging stress, it was checked that the content of relative water content (RWC), proline, chlorophyll and malondialdehyde (MDA), net photosynthesis, the rate of hydrogen peroxide (H2O2) and superoxide radicals (O2?) generation and the antioxidant enzyme activities of superoxide dismutase (SOD) (EC 1.15.1.1), catalase (CAT) (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11) and glutathione reductase (GR) (EC 1.6.4.2) in Welsh onion (Allium fistulosum L) plants. Pretreatment with 2 mM of Spd and Spm effectively maintained the balance of water content in plant leaves and roots under flooding stress. In addition, the data indicate that the protective role of proline should be considered minimal, as its accumulation was found to be inversely correlated with tolerance to stress; it also significantly retarded the loss of chlorophyll, enhanced photosynthesis, decreased the rate of O2? generation and H2O2 content, and prevented flooding-induced lipid peroxidation. Spd and Spm helped to maintain antioxidant enzyme activities under flooding; however, APX activity was found to increase slightly in response to Spm. The antioxidant system, an important component of the water-stress-protective mechanism, can be changed by PAs, which are able to moderate the radical scavenging system and to lessen in this way the oxidative stress. The results suggest that pretreatment with Spd and Spm prevents oxidative damage, and the protective effect of Spd was found to be greater than that of Spm.  相似文献   

16.
Physiological and biochemical responses of wheat seedlings to drought, UV-B radiation, and combined stress were investigated. Drought, UV-B, and combined stresses retarded seedling growth by 26.5, 29.1, and 55.9%, respectively. One reason for growth retardation may be the oxidative damage indicated by an increase in the H2O2 content and lipid peroxidation degree. Furthermore, there was negative correlation between shoot fresh weight and H2O2 content, fresh weight and the content of thiobarbituric acid-reacting substances (TBARS), and the positive correlation between H2O2 content and TBARS (R 2 = 0.9251, 0.9005, and 0.9007, respectively). The activities of superoxide dismutase, guaiacol peroxidase, and ascorbate peroxidase increased under drought, UV-B, and the combination of stresses, while catalase activity decreased under the combined stress as compared to the control. The combination of drought and UV-B caused more severe damage to wheat seedlings than stress factors applied separately. Thus, the combined application of drought and UV-B had more strong adverse effects on wheat seedlings. The addition of 0.2 mM sodium nitroprusside (SNP) enhanced wheat seedling growth under drought, UV-B, and combined stress, likely, due to decreasing the accumulation of H2O2 and lipid peroxidation as well as activating the antioxidant enzymes. However, SNP treatment decreased the proline content. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 5, pp. 763–769. The text was submitted by the authors in English.  相似文献   

17.
Uncertainties about the response of plant physiology and growth to enhanced UV-B radiation cause uncertainty to predict how plant production will vary under future radiation change on the Tibetan Plateau. Here, we used a meta-analysis approach to test the influence of UV-B radiation on plant physiology and growth. This hypothesis was tested by investigating the response of plants, which was expressed by some measurable variables. Enhanced UV-B radiation decreased plant biomass, plant height, basal diameter, leaf area index, maximal PSII efficiency, and Chl a+b, but increased intercellular CO2 concentration, malondialdehyde (MDA), hydrogen peroxide, superoxide anion radical, peroxidase, ascorbate peroxidase, proline and UV-B absorbing compounds. The effect of enhanced UV-B radiation on net photosynthesis rate (P n ) increased with mean annual precipitation and experimental duration. The effect of enhanced UV-B radiation on MDA decreased with experimental duration. The effect of enhanced UV-B radiation on superoxide dismutase (SOD) increased with the magnitude of enhanced UV-B radiation. Forests rather than grasslands exhibited a positive response of SOD and a negative response of P n to enhanced UV-B radiation. Therefore, the effect of enhanced UV-B radiation on alpine plants varied with ecosystem types. Local climate conditions may regulate effects of enhanced UV-B radiation on alpine plants.  相似文献   

18.
The effect of supplementary UV-B radiation on Korean pine (Pinus koraiensis Sieb. et Zucc) was investigated. Compared with the control, the T1, T2, and T3 UV-B treatments increased by 1.40, 2.81, and 4.22 kJ m?2 d?1, respectively. Gas-exchange parameters, photosynthetic pigment concentrations, contents of secondary metabolites, epicuticular wax, free radical, malondialdehyde (MDA), and the activities of antioxidant enzymes were determined after 40 d of exposure. The concentrations of chlorophyll (Chl) a, Chl b, total Chl, carotenoid (Car), and the ratio Chl a/b in the pine needles were in the following order: T1 > T2 > T3. Compared with the control, the contents of flavonoids and epicuticular wax significantly decreased in all levels of supplementary UV-B radiations (p<0.05). Moreover, the contents of hydrogen peroxide (H2O2) and MDA significantly increased with the enhanced UV-B radiations (p<0.05). Korean pine can increase the catalase, ascorbate peroxidase, and superoxide dismutase activities to prevent oxidative stress by supplementary UV-B radiation. However, its defence mechanism is not efficient enough to prevent UV-Binduced damage.  相似文献   

19.
The effects of NiSO4, calcium, and L-histidine (His) on the components of ascorbate-glutathione cycle, antioxidant enzymes and lipid peroxidation in a tomato cultivar Early Urbana Y was investigated. The activities of enzymes including catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), lipoxygenase (LOX), and phenylalanine ammonia lyase (PAL) were measured. In addition, the content of H2O2, ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), chlorophyll (Chl) a+b, carotenoids, proteins, malondialdehyde (MDA), membrane aldehydes, and electrolyte leakage (EL) were determined. Results suggest that the excess of Ni increased the content of H2O2, MDA, membrane aldehydes and proteins in roots as well as GPX, LOX, APX activities, and EL in leaves, whereas Ca and His ameliorated these effects. Moreover, decreasing leaf GSH and DHA content and GR activity were observed under the Ni stress, but these parameters were raised by Ca plus His treatment. However, no improvement in leaf protein, ASC, root GSH content, and activities of PAL and CAT were observed by using Ca or His under Ni stress.  相似文献   

20.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号