首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this investigation, the biological control activity of Arthrobotrys oligospora and Trichoderma harzinum BI against the root-knot nematode, Meloidogyne javanica, infecting tomato, was assessed both in in vitro and in in vivo experiments. In greenhouse experiments, tomato seedlings at six-leaf stage were inoculated with 106?spores/ml of A. oligospora and T. harzianum BI and number of 2000 nematode eggs per individual seedling. In in vitro assays, the per cent inhibition of nematode eggs hatching, the death per cent of second-stage juvenile (J2) and proteolytic activity on casein hydrolysis was evaluated. Results showed that A. oligospora and T. harzianum BI decreased the mean numbers of galls, eggmasses and egg per eggmass significantly (p?<?0.05) compared with control. Percentage hatching inhibition of M. javanica treated with A. oligospora and T. harzianum BI was 25 and 52%, respectively. Moreover, A. oligospora and T. harzianum BI significantly increased (p?<?0.05) the mortality rate of M. javanica (J2) after two and four days (74, 85 and 53, 63%, respectively). A. oligospora and T. harzianum BI had a proteolytic activity of 3.9 (U/min per ml) and 2.4 (U/min per ml) at pH 5.0, respectively. Our data suggest that the application of these two fungi in tomato rhizosphere infected with root-knot nematode M. javanica had antagonistic effects on the infection and reproduction of this nematode and the ability to control its population.  相似文献   

2.
《Journal of Asia》2022,25(1):101846
Meloidogyne incognita is one of the most important plant parasitic nematodes. This study was conducted to determine the nematicidal potential of Beauveria bassiana and Metarhizium anisopliae against M. incognita. B. bassiana and M. anisopliae spore suspensions and bio -nematicide, Purpureocillium lilacinum were applied. B. bassiana and M. anisopliae revealed considerable nematicidal activity against M. incognita in tomato and cucumber. The gall index decreased gradually from 8.0 for control to 3.2, 2.0 and 2.2 for B. bassiana, M. anisopliae and P. lilacinum in tomato, respectively. The highest reduction (%) in gall formation (control index) was calculated as 75.2 % in M. anisopliae treated group for tomato. The gall index was 7.6 for control, but decreased to 3.6, 2.0 and 2.2 for B. bassiana, M. anisopliae and P. lilacinum in cucumber, respectively. The highest control index was 71.7 % for M. anisopliae in cucumber. The number of the second instar juveniles of M. incognita was recorded as 2240 for control. However, this value reduced to 508, 332 and 328 by B. bassiana, M. anisopliae and P. lilacinum in tomato, respectively. The highest control indexes for the second instar juveniles were 85.2 % and 85.3 % for M. anisopliae and P. lilacinum in tomato, respectively. Alike, the highest control indexes were 84.9 % and 85.7 % for the same applications in cucumber, respectively. B. bassiana and M. anisopliae displayed also positive effect on the number of leaves, dry and fresh root weights of tomato. The results showed that B. bassiana and M. anisopliae can be considered as an alternative.  相似文献   

3.
Abstract

A pot trial was conducted to estimate the role of Trichoderma harzianum alone or in combination with two organic substances, potassium humate and chitosan in controlling Meloidogyne incognita on tomato. All treatments caused greater decreases in parameters of M. incognita in comparison to the control treatment (nematode only) and this led to noticeable enhancements in growth and yield of tomato. The lowest numbers of eggmasses, eggs/eggmass, galls/root, females/root, and second stage juveniles/250?g soil were recorded due to the combination of T. harzianum (1010 spore/ml) with chitosan and potassium humate after 120 days from the transplanting of tomato seedlings. Also, this treatment showed the best promotion for all tomato parameters (lengths and weights of shoots and roots, and productivity). So, mixing chitosan, potassium and T. harzianum is highly recommended to be used as an effective bio-nematicide against M. incognita on tomato plants.  相似文献   

4.
Abstract

Root-knot nematodes (Meloidogyne spp.) are one of the most harmful plant pathogenic nematodes worldwide. Application of some herbal products can safely reduce negative effect of these nematodes. In the present study, the effect of aqueous extracts of Amygdalus scoparia and Arctium lappa on hatching and mortality of second-stage juveniles of M. javanica evaluated under laboratory condition and LC30, LC50, LC70 and LC90 values were determined by probit analysis from March to November 2016. Tomato seeds (cv. Early-Urbana) were sown in 1.5?kg plastic pots and simultaneously were inoculated with 4000 eggs and second stage juveniles (J2s) of M. javanica and soil-drenched (50?ml/pot) with selected concentrations of A. scoparia viz. 0.37, 0.54, 0.8 and 1.39% and A. lappa viz. 0.51, 0.85, 1.4 and 2.91%. The experiments were carried out in completely randomized design tests with four replications. Plant growth parameters as well as nematode population indices were calculated 60?days after inoculation. Results showed that after 120?hours, leaf extracts of A. scoparia at the rate of 7.5 and 10%, and leaf extract of A. lappa at the rate of 10% lead to 100% inhibition of M. javanica egg hatching under laboratory condition. Leaf extracts of both of the tested plants at the rate of 2% caused 100% mortality of J2s. Any increase in concentration of used plant extracts significantly improved the growth indices in both of the inoculated and uninoculated tomato plants. As compared to control, application of A. scoparia leaf extract at the rate of 2%, reduced the number of galls, egg masses and eggs per root system as well as the number of J2s per pot and reproduction factor of nematode by 37, 43, 45, 73 and 46%, and in the case of A. lappa, these indices reduced by15, 26, 27, 74 and 28%, respectively. Our results showed potential of leaf extracts of A. scoparia and A. lappa for management of M. javanica infecting tomato plants.  相似文献   

5.
AIMS: To determine the influence of soil-borne fungus Trichoderma harzianum on the biocontrol performance of Pseudomonas fluorescens strain CHA0 and its 2,4-diacetylphloroglucinol (DAPG) overproducing derivative CHA0/pME3424 against Meloidogyne javanica. METHODS AND RESULTS: Amendment of the culture filtrate (CF) or methanol extract of the CF of a T. harzianum strain Th6 to P. fluorescens growth medium enhanced the production of nematicidal compound(s) by bacterial inoculants in vitro. In addition, bacteria overwhelmingly expressed phl'-'lacZ reporter gene when the medium was amended with CF of T. harzianum. Pseudomonas fluorescens and T. harzianum applied together in unsterilized sandy loam soil caused greater reduction in nematode population densities in tomato roots. CONCLUSIONS: Trichoderma harzianum improves root-knot nematode biocontrol by the antagonistic rhizobacterium P. fluorescens both in vitro and under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic effect of T. harzianum on the production of nematicidal compound(s) critical in biocontrol may improve the efficacy of biocontrol bacteria against plant-parasitic nematodes. Considering the inconsistent performance of the biocontrol agents under field conditions, application of a mixture of compatible T. harzianum and P. fluorescens would more closely mimic the natural situation and might broaden the spectrum of biocontrol activity with enhanced efficacy and reliability of control.  相似文献   

6.
A non-sodic, non-saline sandy loam soil was salinized to anion-cation ratios similar to those naturally occurring in Iraq and California. The interactions of saline soils (conductivities 4, 8, 12 and 16 mmhos/cm) with a moderately salt-tolerant plant (Lycopersicon esculentum ''Marimond'') and a plant parasitic nematode (Meloidogyne javanica) were investigated. Plant parasitic nematodes were shown to be an important modifying influence within the plant environment, either accentuating or ameliorating salinity stress effects.  相似文献   

7.
A greenhouse study was conducted to compare the relative efficacy of different approaches to managing Meloidogyne incognita on green bean. These approaches included chemical (fumigant, non-fumigant, seed dressing, and seed dip), biological (the egg-parasitic fungus, Paecilomyces lilacinus and the mycorrhizal fungus Glomus sp.), physical (soil solarization), and cultural (chicken litter and urea) methods. Accordingly, nine different control materials and application methods plus nematode-infected and non-infected controls were compared. Two important parameters were considered: plant response (plant growth and root galling) and nematode reproduction (production of eggs and the reproduction factor Rf). The results showed that the use of chicken litter as an organic fertilizer severely affected the growth and survival of the plants. Therefore, this treatment was removed from the evaluation test. All of the other eight treatments were found to be effective against nematode reproduction, but with different levels of efficacy. The eight treatments decreased (38.9–99.8%) root galling, increased plant growth and suppressed nematode reproduction. Based on three important criteria, namely, gall index (GI), egg mass index (EMI), and nematode reproduction factor (RF), the tested materials and methods were categorized into three groups according to their relative control efficacy under the applied test conditions. The three groups were as follows: (1) the relatively high effective group (GI = 1.0–1.4, Rf = 0.07–0.01), which included the fumigant dazomet, the non-fumigant fenamiphos, soil solarization, and seed dip with fenamiphos; (2) the relatively moderate effective group (GI = 3.4–4.0, Rf = 0.24–0.60), which included seed dressing with fenamiphos and urea; and (3) the relatively less effective group (GI = 5.0, Rf = 32.2–37.2), which included P. lilacinus and Glomus sp.  相似文献   

8.
Summary A diallel cross of eight maize, Zea mays L., inbred lines was analyzed for reaction to two species of root-knot nematodes, Meloidogyne arenaria (Neal) Chitwood and M. javanica (Treub) Chitwood. Egg production following inoculation of F1 hybrid seedlings with nematode eggs was determined in a greenhouse experiment. Data were analyzed using Griffing's Method 4, Model I. General combining ability was a significant source of variation in egg production of both M. arenaria and M. javanica; specific combining ability was not a significant source of variation for either. The correlation between egg production of the two nematode species on the 28 F1 hybrids was highly significant. Hybrids with Mp313 or SC213 as one parent were the most resistant to both species. This indicates that germ plasm is available for developing inbred lines and hybrids with resistance to both M. arenaria race 2 and M. javanica.This article is a contribution of the Crop Science Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, in cooperation with the Mississippi Agricultural and Forestry Experiment Station, Journal No. J-7481.  相似文献   

9.
Six amino acids viz. DL-methionine, DL-valine, DL-serine, DL-phenylalanine, L-proline and L-histidine were tested against root knot of tomato caused by Meloidogyne javanica. All amino acids showed significant response in plant growth characters with corresponding reduction in the number of galls, adult females, egg masses and juvenile stages within the treated plants. DL-phenylalanine gave significantly higher response in reducing the hatch of egg masses and survival of juveniles in in vitro test compared to control. The highest plant growth and maximum reduction of galling incidence of tomato were recorded in the DL-phenylalanine- treated plants followed by L-proline and L-histidine. All the amino acids gave positive response in suppressing the development of the nematode in the treated plants.  相似文献   

10.
Summary Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects, and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial. The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present, strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential.  相似文献   

11.
Aqueous solutions of technical-grade phenamiphos [ethyl 3-methyl-4-(methylthio) phenyl (1-methylethyl) phosphoratnidale] were used in hatching chambers to test, under laboratory tory conditions, the effect of phenamiphos on the hatching and movement of Meloiclogyne javanica and Heterodera schachtii. Hatch of M. javanica and H. schachtii eggs was depressed 70 and 88% by nematicide at 0.48 and 4.80 μg/ml, respectively. The infectivity of second-stage larvae of both species was affected by concentrations as low as 0.01 μg/ml. At least 0.5 μg/ml was required to decrease the movement of larvae of M. javanica and H. schachtii. To decrease the movement of H. schachtii males toward females, 10 μg/ml was required. In a field experiment using a 15% granular formulation, 5 kg/ha a.i. significantly reduced infection of sugarbeet roots by H. schachtii.  相似文献   

12.
Root-knot nematodes (RKNs) have been shown to be challenging and persistent pests of economic crops worldwide. Among RKNs, Meloidogyne javanica is particularly important, as it rapidly spreads and has a diverse host range. Measuring its damaging threshold level will help us to develop management strategies for adequate plant protection against nematodes. In our study, we observed the relationship between a linear series of 12 initial population densities (Pi) of M. javanica, i.e., 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 second-staged juveniles (J2s) g-1 soil, and fenugreek cv. UM202 growth parameters were investigated using a Seinhorst model. A Seinhorst model was fitted to shoot length and dry weight data for fenugreek plants. A positive correlation was found between J2s inoculum levels and percent reductions in growth parameters. The 1.3 J2s of M. javanica g-1 soil were found to damage threshold levels with respect to shoot length and shoot dry weight of fenugreek plants. The minimum relative values (m) for shoot length and shoot dry weight were 0.15 and 0.17, respectively, at Pi =128 J2s g-1 soil. The maximum nematode reproduction rate (Pf /Pi) was 31.6 at an initial population density (Pi) of 2 J2s g-1 soil.  相似文献   

13.
Abstract

Management of root-knot nematodes (Meloidogyne spp.) is too difficult and is mainly based on chemicals. Synthetic nematicides contaminate the environment and endanger the human health, so scientists have been tried to find a new alternative safe method for nematode control. Activating plant immunity system in integration with biological control seems promising. Here, we tried to control Meloidogyne javanica on tomato plants by simultaneous application of jasmonic acid (JA), as a defence inducer, and Purpureocillium lilacinum (Pl) as a biocontrol agent. A factorial experiment was devised with two main factors each in four levels. The concentration of JA and Pl was 0, 0.5, 1, and 1.5?mM and 0, 103, 106, and 109 spore ml?1 suspension, respectively. Cadusafos was used as positive control. Tomato growth characteristic as well as nematode reproduction traits were evaluated 8 weeks after being grown in a greenhouse. The data were analysed by a custom response surface regression model. Increase in concentration of main factors led to increase in plant growth and decrease in nematode reproduction. JA at 1.5?mM concentration could control nematode the same as cadusafos regardless to fungus concentration. Simultaneous application of JA and Pl reciprocally increase the effect of each factor. The lowest concentration of P. lilacinum and JA for achieving the compromise best plant growth and lowest nematode reproduction were 1.5?mM JA and 40.51?×?106 conidia of P. lilacinum ml?1 suspension.  相似文献   

14.
The usefulness of Trichoderma harzianum was tested along with farmyard manure, cow urine, neem oil seed cake, and vermicompost separately and in combination to manage Meloidogyne incognita in Withania somnifera. A treatment combination of nematode inhibitory vermicompost and T. harzianum was found to be most effective against M. incognita.  相似文献   

15.
The non-pathogenic endophytic fungus, Fusarium oxysporum strain 162, originally isolated from the endorhiza of tomato roots, reduces damage caused by Meloidogyne incognita, by inhibiting juvenile penetration of and development in the root. However, little is known about the mode of action of this endophyte fungus against the nematode. This study aimed at investigating how the endophyte affects nematode motility and survival and if induced resistance plays a role in the relationship. In a previous study, F. oxysporum strain 162 decreased nematode penetration of tomato up to 60%. In experiments using a split-root chamber to test for induced resistance, nematode penetration, number of galls, and number of egg masses were investigated 2 and 5 weeks after nematode inoculation. Split-root plants treated with F. oxysporum strain 162 showed 26-45% less nematode penetration, 21-36% less galls and a 22-26% reduction in the number of egg masses in the roots not directly inoculated with the fungus when compared to untreated control plants in repeated tests. In conclusion, inoculation of tomato plants with the non-pathogenic fungal endophyte F. oxysporum strain 162 resulted in a signficant reduction of nematode infection, which was in part due to induced resistance in the first 2-3 weeks after fungal inoculation.  相似文献   

16.
Effects of acibenzolar-s-methyl, an inducer of systemic acquired resistance in plants, on Rotylenchulus reniformis and Meloidogyne javanica in vitro and in vivo were determined. A single foliar application of acibenzolar at 50 mg/liter (5 ml of solution per plant) to 7-day-old cowpea or soybean seedlings decreased R. reniformis and M. javanica egg production by 50% 30 days after inoculation. The mechanism of acibenzolar on plant-parasitic nematodes was then investigated. Acibenzolar at 50 to 200 mg/liter did not affect movement of R. reniformis and M. javanica or penetration of second-stage juveniles (J2) of M. javanica on cowpea. However, M. javanica development was slowed and fecundity was reduced in plants treated with acibenzolar. On average, 50% of J2 that penetrated acibenzolar-treated cowpeas developed into mature females with eggs, whereas the other 50% exhibited arrested development. The number of eggs per egg mass was 450 in water-treated cowpeas, whereas the number declined to 250 in acibenzolar-treated plants. Acibenzolar may be responsible for stimulating the plants to express some resistance to the nematodes.  相似文献   

17.
The interactions between Meloidogyne javanica, Fusarium udum and Rhizobium on pigeon pea, in the presence of nickel (Ni) and cobalt (Co) as soil pollutants, were studied. In single inoculations, M. javanica caused a reduction in plant growth, particularly at higher inoculum levels (1000 and 10 000 JJ2). Fusarium udum induced wilting symptoms and the higher concentrations of Ni and Co suppressed plant growth. Meloidogyne javanica and F. udum interacted to show more severe wilting symptoms than F. udum alone. Wilting was completely inhibited by Ni but reductions in plant growth and nodulation occurred. In the presence of Ni, M. javanica did not cause galling but nodulation was suppressed. Cobalt also suppressed wilting and nodulation but interacted with M. javanica to increase root galling and to reduce plant growth by a greater amount than the total of reductions caused by the individual treatments.  相似文献   

18.
The efficiency of Trichoderma harzianum (MIAU 145 C) in promoting kidney bean (cv. Goli) growth in different soil texture (sandy loam, loam and clay loam) and organic matter content (0.5 and 2% of leaf litter) was assessed in a factorial experiment in the absence of Meloidogyne javanica. In another factorial experiment, the effect of soil texture, soil organic content and control measure (no control, 10?ml of T. harzianum containing 106 spore ml?1 and 2?mg ai cadusafos kg?1 soil) was determined on nematode-infected kidney bean’s growth, fungus controlling activity and M. javanica reproduction. Except for the shoot length, the fungus improved plant growth. Clay loam was not a proper soil type for the cultivation of kidney bean plants (even in the soil without nematode), but the plant grew better in sandy loam and loam soil. The presence of leaf litter in the soil enhanced plant growth, increased fungal efficiency and increased nematode reproduction. It seems that T. harzianum can activate the plant defence system in sandy loam soil. T. harzianum was more effective in sandy loam or loam soil containing 2% organic matter (leaf litter) and reduced the reproduction factor of the nematode in the tested soil textures equally to the chemical nematicide treatment.  相似文献   

19.
Plant parasitic nematodes are major pests on upland cotton worldwide and in the United States. The reniform nematode, Rotylenchulus reniformis and the southern root-knot nematode Meloidogyne incognita are some of the most damaging nematodes on cotton in the United States. Current management strategies focus on reducing nematode populations with nematicides. The objective of this research was to integrate additional fertilizer and nematicide combinations into current practices to establish economical nematode management strategies while promoting cotton yield and profit. Microplot and field trials were run to evaluate fertilizer and nematicide combinations applied at the pinhead square (PHS) and first bloom (FB) plant growth stages to reduce nematode population density and promote plant growth and yield. Cost efficiency was evaluated based on profit from lint yields and chemical input costs. Data combined from 2019 and 2020 suggested a nematicide seed treatment (ST) ST + (NH4)2SO4 + Vydate® C-LV + Max-In® Sulfur was the most effective in increasing seed cotton yields in the R. reniformis microplot trials. In R. reniformis field trials, a nematicide ST + (NH4)2SO4 + Vydate® C-LV at PHS supported the largest lint yield and profit per hectare at $1176. In M. incognita field trials, a nematicide ST + 28-0-0-5 + Vydate® C-LV + Max-In® Sulfur at PHS and FB supported the largest lint yields and profit per hectare at $784. These results suggest that combinations utilizing fertilizers and nematicides applied together across the season in addition to current fertility management show potential to promote yield and profit in R. reniformis and M. incognita infested cotton fields.  相似文献   

20.
The toxic effects of sublethal concentrations ofaldicarb were studied on eggs and second-stage larvae and males of Heterodera schachtii and second-stage larvae only of Meloidogyne javanica in a quartz sand substrate. Aldicarb was more toxic to eggs of H. schachtii than to those of M. javanica. Complete suppression of hatching occurred between 0.48 and 4.8 μg/ml aldicarb for H. schachtii whereas 100% inhibition of hatch of M. javanica occurred between 4.8 and 48.0 μg/ml. M. javanica hatch was stimulated at 0.48 μg/ml aldicarb. Migration of second-stage larvae of H. schachtii and M. javanica in sand columns was inhibited under continuous exposure to 1 μg/ml aldicarb. Infection of sugarbeet and tomato seedlings by larvae was inhibited at 1 μg/ml. H. schachtii males failed to migrate toward nubile females at 0.01 μg/ml aldicarb. This was partially confirmed in a field study in which adding aldicarb to soil resulted in fewer females being fertilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号