首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
寺河矿煤地质产甲烷微生物菌群的保藏和产甲烷性能   总被引:1,自引:0,他引:1  
【背景】煤地质产甲烷微生物菌群可以代谢煤基质产生甲烷,对于实现煤层气资源的再利用具有重要意义。【目的】检测产甲烷菌群在保藏过程中群落结构的动态变化以及在产气实验中甲烷气的生成情况,以验证保藏方法的可行性,同时为煤层气的微生物增产奠定基础。【方法】分别于不同温度条件下比较3种菌种保藏方法,即甘油/L-半胱氨酸法、富营养法和煤基-基础盐法。通过产气实验检测不同保藏条件下产甲烷菌群的活力。同时,采用454高通量测序技术测定16S r RNA基因序列,分析25°C条件下煤基-基础盐菌种保藏过程中微生物群落结构的变化。【结果】比较了9组菌种保藏方法,发现菌种最佳保藏条件为25°C的煤基-基础盐保藏。在该条件下保藏的产甲烷菌群活性最高,甲烷生成量最大。以无烟煤为碳源进行产气实验时甲烷生成量为12%-25%,而以褐煤为碳源时甲烷生成量可达24%-73%。在25°C的煤基-基础盐菌种保藏条件下,保藏初期细菌的主要优势菌为假单胞菌属(Pseudomonas),而古菌的主要优势菌为甲烷八叠球菌属(Methanosarcina)。随着保藏时间的增加,细菌的群落结构变化显著,发酵细菌及产氢产乙酸细菌成为优势细菌,古菌的群落结构则相对稳定。【结论】菌种保藏的最佳条件为25°C的煤基-基础盐,保藏的产甲烷菌群能长期维持在较高的活性状态,具有较好的产甲烷能力。  相似文献   

2.
Microbial biodegradation of coal into low-molecular-weight compounds such as methane has been extensively researched in the last two decades because of the underlying environmental and industrial applications of this technique as compared to the chemical and physical methods of coal conversions. However, the irregular structure of coal and the need for complex microbial consortia under specific culture conditions do not make this biotransformation an ideal process for the development of anaerobic bioreactors. The most abundant species in a methanogenic culture are acetoclastic and hydrogenotrophic methanogens which utilize acetate and H2+CO2, respectively. Medium- to low-rank coals such as high-volatile bituminous, sub-bituminous and lignite are more promising in this bioconversion as compared to semi- and meta-anthracite coals. While covering the details of the ideal culture conditions, this review enlightens the need of research setups to explore the complex microbial consortia and culture conditions for maximum methane production through coal methanogenesis.  相似文献   

3.

Aims

The aim of the present study was to design and test a method allowing the detection and quantification of methanogenic consortia in organic‐rich rocks to determine the potential of methane biotransformation.

Methods and Results

Methanogen numbers in the rock are often below the detection levels of quantification methods. Biostimulation was tested as a means to specifically increase bacterial and archaeal numbers above the detection levels in microcosms. Biostimulation reveals the presence of active heterotrophic and syntrophic bacterial consortia, methane accumulation and methanogens in one of four rock samples. Syntrophs and heterotrophs were dominated by Firmicutes, whereas archaeal diversity was limited to methanogens. Methane‐producing microcosms were characterized by a higher Firmicutes diversity.

Conclusions

Biostimulation is a reliable tool for detection of methanogenic consortia in organic‐rich rocks. For routine and large scale experimentation, methane accumulation monitoring after biostimulation appears as the most time, work and cost efficient approach to detect the presence of active methanogenic consortia.

Significance and Impact of the Study

We report for the first time the presence of live methanogenic consortia in organic‐rich shales and their ability to mineralize the rock into methane. This approach will be instrumental to quantify the potential of these rocks to produce methane as a novel energy source.  相似文献   

4.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

5.
Four methanogenic consortia which degraded 2-chlorophenol, 3-chlorophenol, 2-chlorobenzoate, and 3-chlorobenzoate, respectively, and one nitrate-reducing consortium which degraded 3-chlorobenzoate were characterized. Degradative activity in these consortia was maintained by laboratory transfer for over 2 years. In the methanogenic consortia, the aromatic ring was dechlorinated before mineralization to methane and carbon dioxide. After dechlorination, the chlorophenol consortia converted phenol to benzoate before mineralization. All methanogenic consortia degraded both phenol and benzoate. The 3-chlorophenol and 3-chlorobenzoate consortia also degraded 2-chlorophenol. No other cross-acclimation to monochlorophenols or monochlorobenzoates was detected in the methanogenic consortia. The consortium which required nitrate for the degradation of 3-chlorobenzoate degraded benzoate and 4-chlorobenzoate anaerobically in the presence of KNO3, but not in its absence. This consortium also degraded benzoate, but not 3-chlorobenzoate, aerobically.  相似文献   

6.
Reductive anaerobic dehalogenation is a useful method for remediation of sites contaminated by chlorinated ethylenes, where hydrogen concentration plays the key role. Under anaerobic conditions, dehalogenating bacteria compete best against methanogenic consortia when the hydrogen level is low; and methanogenic consortia outplay dehalogenating bacteria when the hydrogen level is high. Thus, in an anaerobic mixed culture, efficient use of hydrogen for dehalogenation can be achieved by strategies that maintain hydrogen at a certain low concentration. However, due to the role of acetate, expected dehalogenating results cannot be obtained and unexpected methane formation can be encountered in practice.  相似文献   

7.
微生物增产煤层气技术研究进展   总被引:10,自引:0,他引:10  
微生物增产煤层气技术能够产生新的煤层气,有效缓解能源紧张问题,是煤层气开采、增产的研究热点。微生物增产煤层气技术的核心机理是煤的厌氧生物降解产甲烷。国内外研究学者通过实验室模拟研究了本源和外源微生物的降解煤产甲烷能力及影响因素。部分煤层气公司富集或分离获得了高效产甲烷菌群,并研究了微生物增产煤层气技术的现场实施方法。开发煤的预处理技术、构建新型高效菌群等可进一步提高微生物的增产煤层气能力,促进微生物增产煤层气技术的应用。  相似文献   

8.
This mini-review summarizes the category, characteristics, and the application fields of the chemical methanogenic inhibitors. Usually, the chemical methanogenic inhibitors can be divided into “specific” and nonspecific inhibitors. The former group includes the structural analogs of coenzyme M and HMG-CoA inhibitors. The nonspecific group includes many chemicals which can inhibit the activity of both methanogens and non-methanogens. The chemical inhibitors of methanogenesis have been widely used in the fields of understanding methane production and consumption in pure culture or in complex natural environment, production of value-added substances, such as volatile fatty acids and hydrogen, and reduction of energy loss and improvement of the efficiency of ruminal energetic transformations. Finally, with an increasing understanding of the mechanistic effects of the chemical inhibitors of methanogenesis, it is possible that some could be used to develop into promising feed additives to reduce losses associated with enteric methane production or as useful tools to screen microbial consortia from various biotechnological applications to enhance hydrogen and acid production.  相似文献   

9.
Anaerobic oxidation of methane (AOM) and sulphate reduction were examined in sediment samples from a marine gas hydrate area (Hydrate Ridge, NE Pacific). The sediment contained high numbers of microbial consortia consisting of organisms that affiliate with methanogenic archaea and with sulphate-reducing bacteria. Sediment samples incubated under strictly anoxic conditions in defined mineral medium (salinity as in seawater) produced sulphide from sulphate if methane was added as the sole organic substrate. No sulphide production occurred in control experiments without methane. Methane-dependent sulphide production was fastest between 4 degree C and 16 degree C, the average rate with 0.1 MPa (approximately 1 atm) methane being 2.5 micro mol sulphide day(-1) and (g dry mass sediment)(-1). An increase of the methane pressure to 1.1 MPa (approximately 11 atm) resulted in a four to fivefold increase of the sulphide production rate. Quantitative measurements using a special anoxic incubation device without gas phase revealed continuous consumption of dissolved methane (from initially 3.2 to 0.7 mM) with simultaneous production of sulphide at a molar ratio of nearly 1:1. To test the response of the indigenous community to possible intermediates of AOM, molecular hydrogen, formate, acetate or methanol were added in the absence of methane; however, sulphide production from sulphate with any of these compounds was much slower than with methane. In the presence of methane, such additions neither stimulated nor inhibited sulphate reduction. Hence, the experiments did not provide evidence for one of these compounds acting as a free extracellular intermediate (intercellular shuttle) during AOM by the presently investigated consortia.  相似文献   

10.
A freshwater sediment from a ditch of a peat grassland near Zegveld (Province of Utrecht, The Netherlands) was investigated for its potential methanogenic and syntrophic activity and the influence of sulfate and nitrate on these potential activities. Methanogenesis started after a 10 days lagphase. After 35–40 days aceticlastic methanogens were sufficiently enriched to cause a net decrease of acetate. In the presence of sulfate methane formation was only slightly affected. The addition of nitrate led to an outcompetion of aceticlastic methanogens by nitrate reducers. When inorganic electron acceptors were absent, substrates like propionate and butyrate were converted by syntrophic methanogenic consortia. Addition of inorganic electron acceptors resulted in an outcompetition of the syntrophic propionate and butyrate degrading consortia by the sulfate and nitrate reducers.  相似文献   

11.
In abandoned coal mines, methanogenic archaea are responsible for the production of substantial amounts of methane. The present study aimed to directly unravel the active methanogens mediating methane release as well as active bacteria potentially involved in the trophic network. Therefore, the stable-isotope-labeled precursors of methane, [(13)C]acetate and H(2)-(13)CO(2), were fed to liquid cultures from hard coal and mine timber from a coal mine in Germany. Guided by methane production rates, samples for DNA stable-isotope probing (SIP) with subsequent quantitative PCR and denaturing gradient gel electrophoretic (DGGE) analyses were taken over 6 months. Surprisingly, the formation of [(13)C]methane was linked to acetoclastic methanogenesis in both the [(13)C]acetate- and the H(2)-(13)CO(2)-amended cultures of coal and timber. H(2)-(13)CO(2) was used mainly by acetogens related to Pelobacter acetylenicus and Clostridium species. Active methanogens, closely affiliated with Methanosarcina barkeri, utilized the readily available acetate rather than the thermodynamically more favorable hydrogen. Thus, the methanogenic microbial community appears to be highly adapted to the low-H(2) conditions found in coal mines.  相似文献   

12.
Pilot-scale fermentation is one of the important processes for achieving industrialization of biogenic coalbed methane (CBM), although the mechanism of biogenic CBM remains unknown. In this study, 16 samples of formation water from CBM production wells were collected and enriched for methane production, and the methane content was between 3.1 and 21.4%. The formation water of maximum methane production was used as inoculum source for pilot-scale fermentation. The maximum methane yield of the pilot-scale fermentation with lump anthracite amendment reached 13.66 μmol CH4/mL, suggesting that indigenous microorganisms from formation water degraded coal to produce methane. Illumina high-throughput sequencing analysis revealed that the bacterial and archaeal communities in the formation water sample differed greatly from the methanogic water enrichment culture. The hydrogenotrophic methanogen Methanocalculus dominated the formation water. Acetoclastic methanogens, from the order Methanosarcinales, dominated coal bioconversion. Thus, the biogenic methanogenic pathway ex situ cannot be simply identified according to methanogenic archaea in the original inoculum. Importantly, this study was the first time to successfully simulate methanogenesis in large-capacity fermentors (160 L) with lump anthracite amendment, and the result was also a realistic case for methane generation in pilot-scale ex situ.  相似文献   

13.
The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates.  相似文献   

14.
Two coals of different rank, mined in Russia, were treated by an anaerobic methanogenic enrichment culture. The addition of alkaline enclosing rock to the lower-rank coal increased the pH of the incubation medium and methane production above that of the higher-rank coal with addition of its enclosing rock. This effect was accompanied by the leaching of cations from the incubation medium. The coal was processed without a preliminary chemical treatment in a two-stage aerobic/anaerobic bioreactor containing an anaerobic methanogenic granulated enrichment culture. Received: 15 January 1998 / Received revision: 2 October 1998 / Accepted: 2 October 1998  相似文献   

15.
Anaerobic enrichment cultures acclimated for 2 years to use a 14C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic consortia were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethanesulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming consortia with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended consortia, almost half of the original substrate carbon was metabolized to 10 monoaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH4 formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic consortia have the ability to mediate the cleavage of the β-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.  相似文献   

16.
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.  相似文献   

17.
The microbial consortia from produced water at two different oil fields in Alaska (Kuparuk) and the North Sea (Ninian) were investigated for sulfate-reducing and methanogenic activity over a range of temperatures and for a variety of substrates. The consortia were sampled on site, and samples were either incubated on site at 60(deg)C with various substrates or frozen for later incubation and analyses. Temperature influenced the rates of sulfate reduction, hydrogen sulfide production, and substrate oxidation, as well as the cell morphology. The highest rates of sulfate reduction and substrate oxidation were found between 50 and 60(deg)C. Formate and n-butyrate were the most favorable electron donors at any tested temperature. Acetate was utilized at 35(deg)C but not at 50 or 70(deg)C and was produced at 60(deg)C. This indicates that the high levels of acetate found in produced water from souring oil formations are due mainly to an incomplete oxidation of volatile fatty acids to acetate. The cell size distribution of the microbial consortium indicated a nonuniform microbial composition in the original sample from the Kuparuk field. At different temperatures, different microbial morphologies and physiologies were observed. Methane-producing activity at thermophilic temperatures (60(deg)C) was found only for the Kuparuk consortium when hydrogen and carbon dioxide were present. No methane production from acetate was observed. Suppression of methanogenic activity in the presence of sulfate indicated a competition with sulfate-reducing bacteria for hydrogen.  相似文献   

18.
The coenzyme F(420) content of granular sludge grown on various substrates and substrate combinations was measured, and the potential of the sludge to form methane (maximum specific methane production rate) from hydrogen, formate, acetate, propionate, and ethanol was determined. The F(420) content varied between 55 nmol g of volatile suspended solids (VSS) for sludge grown on acetate and 796 nmol g of VSS for sludge grown on propionate. The best correlation was found between the F(420) content and the potential activity for methane formation from formate; almost no correlation, however, was found with acetate as the test substrate. The ratio between the potential methanogenic activities (qch(4)) of sludges grown on various substrates and their F(420) content was in general highest for formate (48.2 mumol of CH(4) mumol of F(420) min) and lowest for propionate (6.9 mumol of CH(4) mumol of F(420) min) as test substrates. However, acetate-grown granular sludge with acetate as test substrate showed the highest ratio, namely, 229 mumol of CH(4) mumol of F(420) min. The data presented indicate that the F(420) content of methanogenic consortia can be misleading for the assessment of their potential acetoclastic methanogenic activity.  相似文献   

19.
Inhibitory effects of nitrogen oxides on a mixed methanogenic culture   总被引:3,自引:0,他引:3  
The effect of nitrate, nitrite, nitric oxide (NO), and nitrous oxide on a mixed, mesophilic (35 degrees C) methanogenic culture was investigated. Short-term inhibition assays were conducted at a concentration range of 10-350 mg N/L nitrate, 17-500 mg N/L nitrite, 0.02-0.8 mg N/L aqueous NO, and 19-191 mg N/L aqueous nitrous oxide. Simultaneous methane production and N-oxide reduction was observed in 10 and 30 mg N/L nitrate and 0.02 mg N/L aqueous NO-amended cultures. However, addition of N-oxide resulted in immediate cessation of methanogenesis in all other cultures. Methanogenesis completely recovered subsequent to the complete reduction of N-oxides to nitrogen gas in all N-oxide-amended cultures, with the exception of the 500 mg N/L nitrite- and 0.8 mg N/L aqueous NO-amended cultures. Partial recovery of methanogenesis was observed in the 500 mg N/L nitrite-amended culture in contrast to complete inhibition of methanogenesis in the 0.8 mg N/L aqueous NO-amended culture. Accumulation of volatile fatty acids was observed in both cultures at the end of the incubation period. Among all N-oxides, NO exerted the most and nitrate exerted the least inhibitory effect on the fermentative/methanogenic consortia. The effect of multiple additions of nitrate (300 mg N/L) on the same methanogenic culture was also investigated. Long-term exposure of the methanogenic culture to nitrate resulted in an increase of N-oxide reduction rates and decrease of methane production rates, which was attributed to changes in the microbial community structure due to nitrate addition.  相似文献   

20.
Propionate is an important intermediate in the anaerobic degradation of complex organic matter to methane and carbon dioxide. The metabolism of propionate-forming and propionate-degrading bacteria is reviewed here. Propionate is formed during fermentation of polysaccharides, proteins and fats. The study of the fate of 13C-labelled compounds by nuclear magnetic resonance (NMR) spectroscopy has contributed together with other techniques to the present knowledge of the metabolic routes which lead to propionate formation from these substrates. Since propionate oxidation under methanogenic conditions is thermodynamically difficult, propionate often accumulates when the rates of its formation and degradation are unbalanced. Bacteria which are able to degrade propionate to the methanogenic substrates acetate and hydrogen can only perform this reaction when the methanogens consume acetate and hydrogen efficiently. As a consequence, propionate can only be degraded by obligatory syntrophic consortia of microorganisms. NMR techniques were used to study the degradation of propionate by defined and less defined cultures of these syntrophic consortia. Different types of side-reactions were reported, like the reductive carboxylation to butyrate and the reductive acetylation to higher fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号