首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Aim

Lipiodol was used for stereotactic body radiotherapy combining trans arterial chemoembolization. Lipiodol used for tumour seeking in trans arterial chemoembolization remains in stereotactic body radiation therapy. In our previous study, we reported the dose enhancement effect in Lipiodol with 10× flattening-filter-free (FFF). The objective of our study was to evaluate the dose enhancement and energy spectrum of photons and electrons due to the Lipiodol depth with flattened (FF) and FFF beams.

Methods

FF and FFF for 6 MV beams from TrueBeam were used in this study. The Lipiodol (3 × 3 × 3 cm3) was located at depths of 1, 3, 5, 10, 20, and 30 cm in water. The dose enhancement factor (DEF) and the energy fluence were obtained by Monte Carlo calculations of the particle and heavy ion transport code system (PHITS).

Results

The DEFs at the centre of Lipiodol with the FF beam were 6.8, 7.3, 7.6, 7.2, 6.1, and 5.7% and those with the FFF beam were 20.6, 22.0, 21.9, 20.0, 12.3, and 12.1% at depths of 1, 3, 5, 10, 20, and 30 cm, respectively, where Lipiodol was located in water. Moreover, spectrum results showed that more low-energy photons and electrons were present at shallow depth where Lipiodol was located in water. The variation in the low-energy spectrum due to the depth of the Lipiodol position was more explicit with the FFF beam than that with the FF beam.

Conclusions

The current study revealed variations in the DEF and energy spectrum due to the depth of the Lipiodol position with the FF and FFF beams. Although the FF beam could reduce the effect of energy dependence due to the depth of the Lipiodol position, the dose enhancement was overall small. To cause a large dose enhancement, the FFF beam with the distance of the patient surface to Lipiodol within 10 cm should be used.  相似文献   

4.
AimThe objective of this study is to explore the use of volumetric arc therapy (VMAT) to perform total marrow irradiation (TMI) and compare its results to the standard TBI technique in the Mexican public health system.BackgroundThe standard total body irradiation (TBI) technique is used with chemotherapy as a method of a pre-transplant conditioning of the bone marrow. In this technique, the whole body of the patient is considered to be PTV and irradiated generating toxicities and raising concerns about possible development of radio-induced tumors.Materials and methodsThrough the use of simulation tomography of 12 patients previously treated with TBI, twelve different treatment plans were created with the proposed TMI technique and compared with the conventional protocol, the treatment plans were evaluated with a dose volume histogram analysis and quality assurance was evaluated with a portal dosimetry system using the gamma index criteria 3%/3 mm.ResultsExperimental results show an increasing dose to 99% of PTV of up to 41.1% by using TMI with the VMAT technique. The mean average dose to PTV was increased up to 19.3%. The use of the new TMI technique caused an improvement in the mean average dose to 99% of the PTV as well the homogeneity of the dose distribution prescribed at the PTV while leading to a better reproducibility of the treatment. The Qa of all the plans met the criterion of gamma index 3 mm-3%.ConclusionThe results analysis shows that the proposed TMI technique is feasible and applicable in the Mexican public health system.  相似文献   

5.
IntroductionThe aim of this study was to evaluate the performance of a knowledge-based planning (KBP) model for breast cancer trained on plans performed on a conventional linac with 6 MV FF (flattening filter) beams and volumetric-modulated arc therapy (VMAT) for plans performed on the new jawless Halcyon© system with 6 MV FFF (flattening filter-free) beams.Materials and methodsBased on the RapidPlan© (RP) KBP optimization engine, a DVH Estimation Model was first trained using 56 VMAT left-sided breast cancer treatment plans performed on a conventional linac, and validated on another 20 similar cases (without manual intervention). To determine the capacity of the model for Halcyon©, an additional cohort of 20 left-sided breast cancer plans was generated with RP and analyzed for both TrueBeam© and Halcyon© machines. Plan qualities between manual vs RP (followed by manual intervention) Halcyon© plans set were compared qualitatively by blinded review by radiation oncologists for 10 new independent plans.ResultsHalcyon© plans generated with the VMAT model trained with conventional linac plans showed comparable target dose distribution compared to TrueBeam© plans. Organ sparing was comparable between the 2 devices with a slight decrease in heart dose for Halcyon© plans. Nine out of ten automatically generated Halcyon© plans were preferentially chosen by the radiation oncologists over the manually generated Halcyon© plans.ConclusionA VMAT KBP model driven by plans performed on a conventional linac with 6 MV FF beams provides high quality plans performed with 6 MV FFF beams on the new Halcyon© linac.  相似文献   

6.
AimThis study aimed to investigate whether IMRT using VMAT is a viable and safe solution in dose escalated RT in these patients.BackgroundAn increasing number of prostate cancer patients are elderly and have hip prostheses. These implants pose challenges in radiotherapy treatment planning. Although intensity modulated radiotherapy (IMRT) is commonly used, there is a lack of clinical studies documenting its efficacy and toxicities in this subgroup of patients.Materials and methodsThe data from 23 patients with hip prostheses and non-metastatic prostate cancer treated with VMAT (volumetric modulated arc therapy) between 2009 and 2011, were retrospectively analyzed. Baseline characteristics, treatment details and outcome data were collected on all patients. The median follow up was 40.9 months. MRI-CT image fusion was performed and the treatment plans were created using RapidArc™ (RA) techniques utilizing 1 or 2 arcs and 10 MV photon beams.Results96% of patients were treated with a dose of 72 Gy/32 fractions over 44 days. 21/23 plans met the PTV targets. The mean homogeneity index was 1.07. 20/23 plans met all OAR constraints (rectum, bladder). Two plans deviated from rectal constraints, four from bladder constraints; all were classed as minor deviations. One patient experienced late grade 3 genitourinary toxicity. Three other patients experienced late grade 2 or lower gastrointestinal toxicity. One patient had biochemical failure and one had a non-prostate cancer related death.ConclusionsVMAT provides an elegant solution to deliver dose escalated RT in patients with unilateral and bilateral hip replacements with minimal acute and late toxicities.  相似文献   

7.
PurposeThis study evaluated whether RapidPlan based plans (RP plans) created by a single optimization, are usable in volumetric modulated arc therapy (VMAT) for patients with prostate cancer.MethodsWe used 51 previously administered VMAT plans to train a RP model. Thirty RP plans were created by a single optimization without planner intervention during optimization. Differences between RP plans and clinical manual optimization (CMO) plans created by an experienced planner for the same patients were analyzed (Wilcoxon tests) in terms of homogeneity index (HI), conformation number (CN), D95%, and D2% to planning target volume (PTV), mean dose, V50Gy, V70Gy, V75Gy, and V78Gy to rectum and bladder, monitor unit (MU), and multi-leaf collimator (MLC) sequence complexity.ResultsRP and CMO values for PTV D95%, PTV D2%, HI, and CN were significantly similar (p < 0.05 for all). RP mean dose, V50Gy, and V70Gy to rectum were superior or comparable to CMO values; RP V75Gy and V78Gy were higher than in CMO plans (p < 0.05). RP bladder dose-volume parameter values (except V78Gy) were lower than in CMO plans (p < 0.05). MU values were RP: 730 ± 55 MU and CMO: 580 ± 37 MU (p < 0.05); and MLC sequence complexity scores were RP: 0.25 ± 0.02 and CMO: 0.35 ± 0.03 (p < 0.05).ConclusionsRP plans created by a single optimization were clinically acceptable in VMAT for patient with prostate cancer. Our simple model could reduce optimization time, independently of planner’s skill and knowledge.  相似文献   

8.
PurposeTo study the influence of Multileaf Collimator (MLC) leaf width in radiosurgery treatment planning for Volumetric Modulated Arc Therapy (VMAT) and 3D Dynamic Conformal Arc Therapy (3D-DCA).Material and methods16 patients with solitary brain metastases treated with radiosurgery via the non-coplanar VMAT were replanned for the 3D-DCA. For each planning technique two MLC leaf width sizes were utilized, i.e. 5 mm and 2.5 mm. These treatment plans were compared using dosimetric indices (conformity, gradient and mean dose for brain tissue) and the normal tissue complication probability (NTCP).ResultsAn improvement in planning quality for VMAT was observed versus 3D-DCA for any MLC leaf width, mainly with regards to dose conformity and to a lesser extent regards dose gradient. No significant difference was observed for any of both techniques using smaller leaf width. However, dose gradient was improved in favor of the 2.5 mm MLC for either of both techniques (15% VMAT and 10% 3D-DCA); being noticeable for lesions smaller than 10 cm3. Nonetheless, the NTCP index was not significantly affected by variations in the dose gradient index.ConclusionsThis, our present study, suggests that the use of an MLC leaf width of 2.5 mm via the noncoplanar VMAT and 3D-DCA techniques provides improvement in terms of dose gradient for small volumes, over those results obtained with an MLC leaf width of 5 mm. The 3D-DCA does also benefit from MLC leaf widths of a smaller size, mainly in terms of conformity.  相似文献   

9.
10.
ObjectiveTo determine the optimum energy and beam arrangement for prostate intensity-modulated radiation therapy (IMRT) delivery using an Elekta Beam Modulator? linear accelerator, in order to inform decisions when commissioning IMRT for prostate cancer.MethodsCMS XiO was used to create IMRT plans for a prostate patient. Arrangements with 3, 5, 7, 9 and 11 equally spaced fields, containing both a direct anterior and a direct posterior beam were used, with both 6 MV and 10 MV photons. The effects of varying the maximum number of iterations, leaf increment, number of intensity levels and minimum segment size were investigated. Treatment plans were compared using isodose distributions, conformity indices for targets and critical structures, target dose homogeneity, body dose and plan complexity.ResultsTarget dose conformity and homogeneity and sparing of critical structures improved with an increasing number of beams, although any improvements were small for plans containing more than five fields. Set-ups containing a direct posterior field provided superior conformality around the rectum to anterior beam arrangements. Mean non-target dose and total number of monitor units were higher with 6 MV for all beam arrangements. The dose distribution resulting from seven 6 MV beams was considered clinically equivalent to that with five 10 MV beams.ConclusionMethods have been developed to plan IMRT treatments using XiO for delivery with a Beam Modulator? that fulfil demanding dose criteria, using many different set-ups. This study suggests that 6 MV photons can produce prostate IMRT plans that are comparable to those using 10 MV. Work is ongoing to develop a complete class solution.  相似文献   

11.
《IRBM》2014,35(5):255-261
PurposeThis work sought to establish whether the choice of CT scanner calibration curve has a significant effect on dose computation using density correction methods for chest cancer.Material and methodsCIRS®062 phantom was used to calculate the Hounsfield Unit using 80, 120 and 140 kV. Four CT calibration curves were implanted in the Eclipse® TPS. Forty-two irradiation fields for 4 patients with lung cancer were included and analysed. The patients were treated with 3-dimensional radiation therapy. For each patient, 3 treatment plans were generated using exactly the same beam configuration. In plan 1, the dose was calculated using the Modified Batho (MB) method. In plan 2, the dose was calculated using the Batho power law (BPL) method. In plan 3, the dose was calculated using the Equivalent Tissue Air Ratio (ETAR) method. To evaluate the treatment plans computed by the three methods, the monitor units, dose volume histograms, conformity index, homogeneity index, planning target volumes conformity index, geometrical index and 2D gamma index were compared. The statistical analysis was carried out using Wilcoxon signed rank test.ResultsThe three density correction methods in plans 1, 2 and 3 using tested curves produced a difference less than 1% for MUs and DVH. Wilcoxon test showed a statically significant difference for MUs using ETAR method with calibration curves based on 80 and 120 kV. There was no significant difference for the quality indices between plan 1, 2 and 3, (P > 0.05), but a significant difference for the planning target volumes conformity index between plans 1, 2 and 3 (P < 0.05) was observed. The 2D gamma analysis showed that 100% of pixels had gamma  1.ConclusionThe impact of the modification of CT calibration curves on dose is negligible for chest cancer using density correction methods. One calibration curve can be used to take into account the density correction for lung.  相似文献   

12.
AimThe main purpose of this study is to perform a dosimetric comparison on target volumes and organs at risks (OARs) between prostate intensity modulated treatment plans (IMRT) optimized with different multileaf collimators (MLCs).BackgroundThe use of MLCs with a small leaf width in the IMRT optimization may improve conformity around the tumor target whilst reducing the dose to normal tissues.Materials and methodsTwo linacs mounting MLCs with 5 and 10 mm leaf-width, respectively, implemented in Pinnacle3 treatment planning system were used for this work. Nineteen patients with prostate carcinoma undergoing a radiotherapy treatment were enrolled. Treatment planning with different setup arrangements (7 and 5 beams) were performed for each patient and each machine. Dose volume histograms (DVHs) cut-off points were used in the treatment planning comparison.ResultsComparable planning target volume (PTV) coverage was obtained with 7- and 5-beam configuration (both with 5 and 10 mm MLC leaf-width). The comparison of bladder and rectum DVH cut-off points for the 5-beam arrangement shows that 52.6% of the plans optimized with a larger leaf-width did not satisfy at least one of the OARs’ constraints. This percentage is reduced to 10.5% for the smaller leaf-width. If a 7-beam arrangement is used the value of 52.6% decreases to 21.1% while the value of 10.5% remains unchanged.ConclusionMLCs collimators with different widths and number of leaves lead to a comparable prostate treatment planning if a proper adjustment is made of the number of gantry angles.  相似文献   

13.
BackgroundThe most common secondary cancer is contralateral breast (CLB) cancer after whole breast irradiation (WBI). The aim of this study was to quantify the reduction of CLB dose in tangential intensity modulated radiotherapy (t-IMRT) for WBI using flattening-filter-free (FFF) beams.Materials and methodsWe generated automated planning of 20 young breast cancer patients with limited user interaction. Dose-volume histograms of the planning target volume (PTV), ipsilateral lung, heart, and CLB were calculated. The dose of PTV, the most medial CLB point, and the CLB point below the nipple was measured using an ionization chamber inserted in a slab phantom. We compared the two t-IMRT plans generated by FFF beams and flattening-filter (FF) beams.ResultsAll plans were clinically acceptable. There was no difference in the conformal index, the homogeneity for FFF was significantly worse. For the ipsilateral lung, the maximum dose (Dmax) was significantly higher; however, V20 showed a tendency to be lower in the FFF plan. No differences were found in the Dmax and V30 to the heart of the left breast cancer. FF planning showed significantly lower Dmax and mean dose to the CLB. In contrast to the calculation results, the measured dose of the most medial CLB point and the CLB point below the nipple were significantly lower in FFF mode than in FF mode, with mean reductions of 21.1% and 20%, respectively.ConclusionsT-IMRT planning using FFF reduced the measured out-of-field dose of the most medial CLB point and the CLB point below the nipple.  相似文献   

14.
AimTo compare the radiotherapy technique used in a randomised trial with VMAT and an in-house technique for prostate cancer.BackgroundTechniques are evolving with volumetric modulated arc therapy (VMAT) commonly used. The CHHiP trial used a 3 PTV forward planned IMRT technique (FP_CH). Our centre has adopted a simpler two PTV technique with locally calculated margins.Materials and methods25 patients treated with FP_CH to 60 Gy in 20 fractions were re-planned with VMAT (VMAT_CH) and a two PTV protocol (VMAT_60/52 and VMAT_60/48). Target coverage, conformity index (CI), homogeneity index (HI), monitor units (MU) and dose to the rectum, bladder, hips and penile bulb were compared.ResultsPTV coverage was high for all techniques. VMAT_CH plans had better CI than FP_CH (p   0.05). VMAT_60/52/48 plans had better CI than VMAT_CH. FP_CH had better HI and fewer MU than VMAT (p   0.05). More favourable rectum doses were found for VMAT _CH than FP_CH (V48.6, V52.8, V57, p   0.05) with less difference for bladder (p   0.05). Comparing VMAT_CH to VMAT_60/52/48 showed little differences for the bladder and rectum but VMAT_CH had larger penile bulb doses (V40.8, V48.6, mean, D2, p   0.05). Femoral head doses (V40.8) were similarly low for all techniques (p = ≥ 0.05).ConclusionVMAT produced more conformal plans with smaller rectum doses compared to FP_CH albeit worse HI and more MU. VMAT_60/52 and VMAT_60/48 plans had similar rectal and bladder doses to VMAT_CH but better CI and penile bulb doses which may reduce toxicity.  相似文献   

15.
PurposeThis treatment planning study was conducted to determine whether spot scanning proton beam therapy (SSPT) reduces the risk of grade ⩾3 hematologic toxicity (HT3+) compared with intensity modulated radiation therapy (IMRT) for postoperative whole pelvic radiation therapy (WPRT).Methods and materialsThe normal tissue complication probability (NTCP) of the risk of HT3+ was used as an in silico surrogate marker in this analysis. IMRT and SSPT plans were created for 13 gynecologic malignancy patients who had received hysterectomies. The IMRT plans were generated using the 7-fields step and shoot technique. The SSPT plans were generated using anterior-posterior field with single field optimization. Using the relative biological effectives (RBE) value of 1.0 for IMRT and 1.1 for SSPT, the prescribed dose was 45 Gy(RBE) in 1.8 Gy(RBE) per fractions for 95% of the planning target volume (PTV). The homogeneity index (HI) and the conformity index (CI) of the PTV were also compared.ResultsThe bone marrow (BM) and femoral head doses using SSPT were significantly lower than with IMRT. The NTCP modeling analysis showed that the risk of HT3+ using SSPT was significantly lower than with IMRT (NTCP = 0.04 ± 0.01 and 0.19 ± 0.03, p = 0.0002, respectively). There were no significant differences in the CI and HI of the PTV between IMRT and SSPT (CI = 0.97 ± 0.01 and 0.96 ± 0.02, p = 0.3177, and HI = 1.24 ± 0.11 and 1.27 ± 0.05, p = 0.8473, respectively).ConclusionThe SSPT achieves significant reductions in the dose to BM without compromising target coverage, compared with IMRT. The NTCP value for HT3+ in SSPT was significantly lower than in IMRT.  相似文献   

16.
AimThe aim of this study was to determine the Inflection Points (IPs) of flattening filter free (FFF) CyberKnife dose profiles for cone-based streotactic radiotherapy. In addition, dosimetric field sizes were determined.BackgroundThe increased need for treatment in the early stages of cancer necessitated the treatment of smaller tumors. However, efforts in that direction required the modeling accuracy of the beam. Removal of the flattening filter (FF) from the path of x-ray beam has provided the solution to those efforts, but required a different normalization approach for the beam to ensure the delivery of the dose accurately. As a solution, researchers proposed a normalization factor based on IPs.Materials and methodsMeasurements using microDiamond (PTW 60019), Diode SRS (PTW 60018) and Monte Carlo (MC) calculations of dose profiles were completed at SAD 80 cm and 5 cm depth for 15–60 mm cones. Performance analysis of detectors with respect to MC calculation was carried out. Gamma evaluation method was used to determine achievable acceptability criteria for FFF CyberKnife beams.ResultsAcceptability within (3%–0.5 mm) was found to be anachievable criterion for all dose profile measurements of the cone beams used in this study. To determine the IP, the first and second derivatives of the dose profile were determined via the cubic spline interpolation technique.ConclusionDerivatives of the interpolated profiles showed that locations of IPs and 50% isodose points coincide.  相似文献   

17.
BackgroundThe aim was to study the impact of the flattening filter free (FFF) beam on overall treatment time for frameless intracranial radiosurgery using TrueBeam® LINAC.The development of frameless stereotactic radiosurgery (SRS) is possible due to the incorporation of image guidance in the delivery of treatment. It is important to analyze the cost and benefits of FFF beams for treating SRS by understanding the impact of FFF beams in reducing the treatment time.Materials and methodsDynamic conformal arc (DCA ) and volumetric arc therapy (VMAT) plans were generated using 6 MV with a flattening filter (FF) and FFF beams. Overall treatment time was divided into beam on time (BOT) and beam off time (BFT). Percentage beam on time reduction (PBOTR) and Percentage total time reduction (PTTR) factors were defined for the comparison.ResultsBOT reduction was observed to be significant for higher dose per fraction but subjected to the treatment technique and modulation differences. PBOTR values are much higher than PTTR values. The 39.9% of PBOTR resulted in only 8% PTTR for DCA and 65.3% resulted in 15.9% PTTR for VMAT.ConclusionMajor BFT was utilized for imaging and verification. FFF beam significantly reduced the beam on time and was found to be most effective if the fractional dose was as high as that for SRS. Newly defined PBOTR and PTTR factors are very useful indicators to evaluate the efficacy of FFF beams in terms of time reduction.  相似文献   

18.
PurposeA log file-based method cannot detect dosimetric changes due to linac component miscalibration because log files are insensitive to miscalibration. Herein, clinical impacts of dosimetric changes on a log file-based method were determined.Methods and materialsFive head-and-neck and five prostate plans were applied. Miscalibration-simulated log files were generated by inducing a linac component miscalibration into the log file. Miscalibration magnitudes for leaf, gantry, and collimator at the general tolerance level were ±0.5 mm, ±1°, and ±1°, respectively, and at a tighter tolerance level achievable on current linac were ±0.3 mm, ±0.5°, and ±0.5°, respectively. Re-calculations were performed on patient anatomy using log file data.ResultsChanges in tumor control probability/normal tissue complication probability from treatment planning system dose to re-calculated dose at the general tolerance level was 1.8% on planning target volume (PTV) and 2.4% on organs at risk (OARs) in both plans. These changes at the tighter tolerance level were improved to 1.0% on PTV and to 1.5% on OARs, with a statistically significant difference.ConclusionsWe determined the clinical impacts of dosimetric changes on a log file-based method using a general tolerance level and a tighter tolerance level for linac miscalibration and found that a tighter tolerance level significantly improved the accuracy of the log file-based method.  相似文献   

19.
Background and purposeTo assess anatomic changes during intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC) and to determine its dosimetric impact.Patients and methodsTwenty patients treated with IMRT for NPC were enrolled in this study. A second CT was performed at 38 Gy. Manual contouring of the macroscopic tumor volumes (GTV) and the planning target volumes (PTV) were done on the second CT. We recorded the volumes of the different structures, D98 %, the conformity, and the homogeneity indexes for each PTV. Volume percent changes were calculated.ResultsWe observed a significant reduction in tumor volumes (58.56 % for the GTV N and 29.52 % for the GTV T). It was accompanied by a significant decrease in the D98 % for the 3 PTV (1.4 Gy for PTV H, p = 0.007; 0.3 Gy for PTV I, p = 0.03 and 1.15 Gy for PTV L, p = 0 0.0066). In addition, we observed a significant reduction in the conformity index in the order of 0.02 (p = 0.001) and 0.01 (p = 0.007) for PTV H and PTV I, respectively. The conformity variation was not significant for PTV L. Moreover, results showed a significant increase of the homogeneity index for PTV H (+ 0.03, p = 0.04) and PTV L (+ 0.04, p = 0.01).ConclusionTumor volume reduction during the IMRT of NPC was accompanied by deterioration of the dosimetric coverage for the different target volumes. It is essential that a careful adaptation of the treatment plan be considered during therapy for selected patients.  相似文献   

20.
PurposeTo investigate the feasibility of carotid sparing intensity modulated radiation therapy (CS-IMRT) to minimize the radiation dose to carotid arteries for comprehensive irradiation of breast cancer patients who have risk factors for atherosclerosis. The dose distribution of CS-IMRT technique and the conventional irradiation technique were also compared.Patients and methodsTen patients who were previously treated with comprehensive three-dimensional conformal radiation therapy (3DCRT) were selected. DICOM data were used to contour the carotid artery and to create the virtual CS-IMRT plans for each patient. 3DCRT and CS-IMRT plans were compared in terms of conformity index, homogeneity index, and the doses to organ at risk and carotid arteries.ResultsThe homogeneity and conformity indices were better with CS-IMRT plans compared to 3DCRT plan. The homogeneity index was 1.13 vs 1.11 (p = 0.007) for 3DCRT and CS-IMRT and the conformity index was 0.96 vs 0.97 (p = 0.006) for 3DCRT and CS-IMRT. The radiation dose to the carotid arteries were reduced by applying CS-IMRT without compromising the target volume coverage. When the carotid artery was considered as organ at risk for CS-IMRT planning, the median of V50 was decreased to 0% from 12.5% compared to 3DCRT plans (p = 0.017). The median of the maximum dose to the carotid artery was decreased under 50 Gy with CS-IMRT.ConclusionsCS-IMRT can significantly reduce the unnecessary radiation dose to the carotid arteries compared with conventional 3DCRT technique while maintaining target volume coverage. CS-IMRT technique can be considered for breast cancer patient with high risk of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号