首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AimThe aim of this review is to describe and analyze indications and results of the use of SBRT in uterine cervix cancer, reviewing articles published from January 2010 up to August 2017, for any one of the four indications listed:
  • 1Patient refusal or anatomic impediments to interstitial or intracavitary brachytherapy (BCT), i.e. SBRT as an “alternative” for BCT;
  • 2Patients with voluminous tumors, or asymmetric tumors where BCT alone would not achieve curative doses, i.e. SBRT as a primary adjunct to BCT;
  • 3Pelvic and para aortic adenopathy where SBRT could be used as a boost, i.e. SBRT as a primary adjunct to external beam pelvic radiotherapy;
  • 4Small volume recurrences (postoperative or post radiotherapy), i.e. SBRT for salvage.
BackgroundCervix cancer standard treatment involves pelvic irradiation and chemotherapy, recent advances in irradiation techniques might offer new possible approaches.Material and methodsSystematic review of the English language literature about Cervix cancer, SBRT, published from January 2010 to January 2018 identified through a database search of PubMed, and Ovid MEDLINE, using pre-defined search phrases.ResultsThe results in the literature, in general, demonstrate rather weak efficacy of SBRT. In this review, we did not find strong evidence to recommend routine SBRT as a primary treatment for cervico-uterine cancers, i.e. as a replacement for BCT; in highly selected cases it might be considered useful as salvage therapy for relapsed cervix cancer.ConclusionThe existing data to not warrant recommending SBRT for the definitive treatment of cervix cancer, but may have some value in the recurrent/relapsed setting.  相似文献   

3.
Stereotactic body radiation therapy (SBRT) has become a standard treatment for non-operable patients with early stage non-small cell lung cancer (NSCLC). In this context, medical physics community has largely helped in the starting and the growth of this technique. In fact, SBRT requires the convergence of many different features for delivering large doses in few fractions to small moving target in an heterogeneous medium. The special issue of last month, was focused on the different physics challenges in lung SBRT. Eleven reviews were presented, covering: imaging for treatment planning and for treatment assessment; dosimetry and planning optimization; treatment delivery possibilities; image guidance during delivery; radiobiology. The current cutting edge role of medical physics was reported. We aimed to give a complete overview of different aspects of lung SBRT that would be of interest to both physicists implementing this technique in their institutions and more experienced physicists that would be inspired to start research projects in areas that still need further developments. We also feel that the role that medical physicists have played in the development and safe implementation of SBRT, particularly in lung region, can be taken as an excellent example to be translated to other areas, not only in Radiation Oncology but also in other health sectors.  相似文献   

4.
The application of high precision hypofractionated regimes (a.k.a. stereotactic body radiotherapy (SBRT)) to the treatment of lung cancer is a ‘success story’ of radiotherapy. From the technical perspective, lung SBRT is a challenging technique as all aspects of the treatment workflow, from imaging to dose calculation to treatment delivery, should be carefully handled in order to ensure consistency between planned and delivered dose.In this review such technical aspects are presented and discussed, looking at what has been developed over the years.The use of imaging techniques such as slow-CT, breath-hold CT, four-dimensional CT and mid-ventilation is reviewed, presenting the main characteristics of each approach but not necessarily to single out ‘the best’ solution.Concerning dose calculation, a number of studies clearly separate dose algorithms that should be considered inadequate for lung SBRT (e.g. simple pencil beam algorithms) from approaches such as convolution algorithms, Monte Carlo, and solution of the transport equation, that are much better at handling the combination of small fields and heterogenenous geometries that make dose calculation not trivial.Patient positioning and management of intrafraction motion have been two areas of significant developments, to the point where it is difficult to identify which solution represents the best compromise between technical complexity and clinical effectiveness. The review analyses several of these methods, outlining the residual uncertainties associated with each of them.Last but not least, two subjects are discussed, adaptive therapy and particle therapy, that may represent in the near future additional tools for the technical improvement of lung SBRT.  相似文献   

5.
Kumar P 《Reviews in urology》2003,5(Z3):S71-S77
Survival and biochemical outcome of patients with localized, high-risk prostate cancer treated with definitive three-dimensional conformal radiation therapy (3-D CRT) with or without hormonal therapy are poor. Other therapeutic strategies are needed to improve outcome in these poor-prognostic-group patients. One such strategy involves the use of chemotherapeutic agents to radiosensitize the effects of local 3-D CRT. Very few investigators have tested this novel concept of chemotherapeutic radiosensitization. Two studies evaluated the combination of estramustine phosphate and vinblastine (EV) with radiation therapy (RT). In both studies, the combination of EV and RT resulted in moderate to severe acute and late toxicity. A recently completed, phase I trial evaluated the maximally tolerated dose (MTD) of weekly docetaxel that could be concurrently delivered with 3-D CRT (70.2 Gy) in men with high-risk prostate cancer. The MTD of concurrent weekly docetaxel with 3-D CRT was determined to be 20 mg/m(2), and this combination was shown to be safe and well tolerated. This was the first trial to evaluate taxane radiosensitization in prostate cancer. Other phase I/II studies are needed to further assess chemotherapeutic radiosensitization in localized, high-risk prostate cancer.  相似文献   

6.
7.
BackgroundIn the current study we evaluated 68Ga PSMA PET/ CT to measure local control of bone metastasis in oligometastatic prostate cancer patients treated with SBRT.Materials and methodsAfter the institutional review board approval, a retrospective review of medical records of consecutive prostate cancer patients treated between 2014 and 2018 was conducted. Only medical records of patients that were treated with SBRT for bone metastasis and had pre-and post-SBRT 68Ga PSMA PET/CT scans were included in our study. Data extracted from the medical files included patient-related (age), disease-related (Gleason score, site of metastasis), and treatment-related factors and outcomes.ResultsDuring the study period, a total of 12 patients (15 lesions) were included, with a median age of 73 years. The median follow-up was 26.5 months (range 13–45 months). Median time of 68Ga PSMA PET/ CT follow up was 17.0 months (range 3–39 months). The median pre-treatment PSA was 2 ng/mL (range 0.56–44 ng/mL) vs. post treatment PSA nadir of 0.01 ng/mL (0.01–4.32) with a median time to nadir of 7 months (range, 2–12). Local control was 93% during the follow up period and there was correlation with PS MA avidity on PE T. None patients developed recurrences in the treated bone. None of the patients had grade 3 or more toxicities during follow-up.ConclusionsSBRT is a highly effective and safe method for treatment of prostate cancer bone metastases. More studies are required to determine if SBRT provides greater clinical benefit than standard fractionation for oligometastatic prostate cancer patients. 68Ga PSMA PET/CT should be further investigated for delineation and follow-up.  相似文献   

8.
SBRT for lung cancer is being rapidly adopted as a treatment option in modern radiotherapy centres. This treatment is one of the most complex in common clinical use, requiring significant expertise and resources. It delivers a high dose per fraction (typically ∼6–30 Gy/fraction) over few fractions. The complexity and high dose delivered in only a few fractions make powerful arguments for the application of in vivo dosimetry methods for these treatments to enhance patient safety. In vivo dosimetry is a group of techniques with a common objective – to estimate the dose delivered to the patient through a direct measurement of the treatment beam(s). In particular, methods employing an electronic portal imaging device have been intensely investigated over the past two decades. Treatment verification using in vivo dosimetry approaches has been shown to identify errors that would have been missed with other common quality assurance methods. With the addition of in vivo dosimetry to verify treatments, medical physicists and clinicians have a higher degree of confidence that the dose has been delivered to the patient as intended.In this review, the technical aspects and challenges of in vivo dosimetry for lung SBRT will be presented, focusing on transit dosimetry applications using electronic portal imaging devices (EPIDs). Currently available solutions will be discussed and published clinical experiences, which are very limited to date, will be highlighted.  相似文献   

9.
AimTo review the recent evolution of spine SBRT with emphasis on single dose treatments.BackgroundRadiation treatment of spine metastases represents a challenging problem in clinical oncology, because of the high risk of inflicting damage to the spinal cord. While conventional fractionated radiation therapy still constitutes the most commonly used modality for palliative treatment, notwithstanding its efficacy in terms of palliation of pain, local tumor control has been approximately 60%. This limited effectiveness is due to previous lack of technology to precisely target the tumor while avoiding the radiosensitive spinal cord, which constitutes a dose-limiting barrier to tumor cure.Materials and methodsA thorough review of the available literature on spine SBRT has been carried out and critically assessed.ResultsStereotactic body radiotherapy (SBRT) emerges as an alternative, non-invasive high-precision approach, which allows escalation of tumor dose, while effectively sparing adjacent uninvolved organs at risk. Engaging technological advances, such as on-line Cone Beam Computed Tomography (CBCT), coupled with Dynamic Multi-Leaf Collimation (DMLC) and rapid intensity-modulated (IMRT) beam delivery, have promoted an interactive image-guided (IGRT) approach that precisely conforms treatment onto a defined target volume with a rapid dose fall-off to collateral non-target tissues, such as the spinal cord. Recent technological developments allow the use of the high-dose per fraction mode of hypofractionated SBRT for spinal oligometastatic cancer, even if only a few millimeters away from the tumor.ConclusionSingle-dose spine SBRT, now increasingly implemented, yields unprecedented outcomes of local tumor ablation and safety, provided that advanced technology is employed.  相似文献   

10.
Stereotactic body radiotherapy (SBRT) is rapidly becoming an alternative to surgery for the treatment of early-stage non-small cell lung cancer patients. Lung SBRT is administered in a hypo-fractionated, conformal manner, delivering high doses to the target. To avoid normal-tissue toxicity, it is crucial to limit the exposure of nearby healthy organs-at-risk (OAR).Current image-guided radiotherapy strategies for lung SBRT are mostly based on X-ray imaging modalities. Although still in its infancy, magnetic resonance imaging (MRI) guidance for lung SBRT is not exposure-limited and MRI promises to improve crucial soft-tissue contrast. Looking beyond anatomical imaging, functional MRI is expected to inform treatment decisions and adaptations in the future.This review summarises and discusses how MRI could be advantageous to the different links of the radiotherapy treatment chain for lung SBRT: diagnosis and staging, tumour and OAR delineation, treatment planning, and inter- or intrafractional motion management. Special emphasis is placed on a new generation of hybrid MRI treatment devices and their potential for real-time adaptive radiotherapy.  相似文献   

11.

Background

The CyberKnife is an appealing delivery system for hypofractionated stereotactic body radiation therapy (SBRT) because of its ability to deliver highly conformal radiation therapy to moving targets. This conformity is achieved via 100s of non-coplanar radiation beams, which could potentially increase transitory testicular irradiation and result in post-therapy hypogonadism. We report on our early experience with CyberKnife SBRT for low- to intermediate-risk prostate cancer patients and assess the rate of inducing biochemical and clinical hypogonadism.

Methods

Twenty-six patients were treated with hypofractionated SBRT to a dose of 36.25 Gy in 5 fractions. All patients had histologically confirmed low- to intermediate-risk prostate adenocarcinoma (clinical stage ≤ T2b, Gleason score ≤ 7, PSA ≤ 20 ng/ml). PSA and total testosterone levels were obtained pre-treatment, 1 month post-treatment and every 3 months thereafter, for 1 year. Biochemical hypogonadism was defined as a total serum testosterone level below 8 nmol/L. Urinary and gastrointestinal toxicity was assessed using Common Toxicity Criteria v3; quality of life was assessed using the American Urological Association Symptom Score, Sexual Health Inventory for Men and Expanded Prostate Cancer Index Composite questionnaires.

Results

All 26 patients completed the treatment with a median 15 months (range, 13-19 months) follow-up. Median pre-treatment PSA was 5.75 ng/ml (range, 2.3-10.3 ng/ml), and a decrease to a median of 0.7 ng/ml (range, 0.2-1.8 ng/ml) was observed by one year post-treatment. The median pre-treatment total serum testosterone level was 13.81 nmol/L (range, 5.55 - 39.87 nmol/L). Post-treatment testosterone levels slowly decreased with the median value at one year follow-up of 10.53 nmol/L, significantly lower than the pre-treatment value (p < 0.013). The median absolute fall was 3.28 nmol/L and the median percent fall was 23.75%. There was no increase in biochemical hypogonadism at one year post-treatment. Average EPIC sexual and hormonal scores were not significantly changed by one year post-treatment.

Conclusions

Hypofractionated SBRT offers the radiobiological benefit of a large fraction size and is well-tolerated by men with low- to intermediate-risk prostate cancer. Early results are encouraging with an excellent biochemical response. The rate of new biochemical and clinical hypogonadism was low one year after treatment.  相似文献   

12.
BackgroundThe outstanding innovations made by early diagnosis, novel surgical techniques, effective chemotherapy regimens and conformal radiotherapy, have significantly improved patients overall survival and quality of life. Multidisciplinary approach to cancer has also led to an increased prevalence of patients with few, organ-confined metastases, who can experience long-term survival even if their disease is no longer localized. Liver is one of the most common site for metastatic disease from several cancers, and when metastatic disease is confined to liver, given the ability of this organ to regenerate almost to its optimal volume, surgical resection represents the standard of care because is associated with a better prognosis. Approximately 70–90% of liver metastases, however, are unresectable and a safe, effective alternative therapeutic option is necessary for these patients.Materials and methodsA review of the current literature was performed to analyze the role of SBRT in treating liver metastases from different cancers. A literature search using the terms “SBRT” and “liver metastases” was carried out in PUBMED.ResultsStereotactic body radiation therapy has shown to provide promising results in the treatment of liver metastases, thanks to the ability of this procedure to deliver a conformal high dose of radiation to the target lesion and a minimal dose to surrounding critical tissues.ConclusionStereotactic body radiation therapy is a non-invasive, well-tolerated and effective treatment for patients with liver metastases not suitable for surgical resection.  相似文献   

13.
BackgroundThe present study assessed clinical outcomes of stereotactic body radiotherapy (SBRT) in oligometastatic prostate cancer patients.Materials and methodsBetween 2017 and 2020, 37 lesions (12 osseous and 25 nodal targets) detected with conventional and/or functional imaging, were treated in 29 patients (pts), in different clinical settings: de novo oligometastatic (2 pts), oligorecurrent castration-sensitive (19 pts), castration-resistant (6 pts) prostate cancers and oligoprogressive disease during systemic therapy (2 pts). SBRT was delivered with volumetric modulated arc therapy up to a total dose of 21 Gy given in 3 fractions for bone and 30 Gy in 5 fractions for nodal metastases. A total of 34% of pts received hormonal therapy. We evaluated biochemical control [prostate serum antigen (PSA) increase < 10%)], progression free-survival (PFS) (time from SBRT to biochemical progression), local control (LC) (time from SBRT to in-field radiologic progression), hormone/systemic therapy-free survival, acute and late toxicities.ResultsAt 3 months, biochemical response was observed in 20/29 pts (69%). At a median follow-up of 17 months (range 6–33), 8/20 (40%) of the 3-month responders remained free from progression. Two-year PFS and LC were 37% and 70%, respectively. In-field progression occurred in 3/37 (8%) lesions. Hormone/systemic therapy was delayed by an average of 11.6 months (range 3–28). No significant difference in PFS based on the type of lesion or concomitant endocrine therapy was observed and no toxicity > grade 2 was reported.ConclusionsSBRT for oligometastatic prostate cancer offers a good biochemical/local control and tangible delay of hormone/systemic therapy without major toxicities.  相似文献   

14.
AimRadiation therapy (RT) is a standard therapeutic option for prostate cancer (PC). In the last decades, several innovative technology applications have been introduced. 3-Dimensional conformal RT, volumetric/rotational intensity modulated RT associated or not with image-guided RT, are becoming largely diffused in the treatment of PC.BackgroundConsidering that PC could have a low α/β ratio, similar to late-reacting normal tissues, it could also be highly responsive to fraction size. Thus, the reduction of the number of fractions and the increase of the dose/fraction seem to be reasonable choices in the treatment of this cancer. This review reported the technology evolution, the radiobiological and the clinical data about the role of extreme hypofractionated RT in the treatment approach of PC patients.Materials and methodsMedline search and analysis of published studies containing key words: prostate cancer, radiotherapy, stereotactic radiotherapy.ResultsRecent technological developments, combined with an improved knowledge of the radiobiological models in favor of a high sensitivity of PC to larger fraction sizes are opening a new scenario in its treatment, reporting favorable efficacy and acceptable toxicity, despite short follow-up.ConclusionThus, thanks to technological improvement and the recent radiobiological data, “extreme hypofractionated RT” has been strongly introduced in the last years as a potential solid treatment option for PC.  相似文献   

15.
Recently, 2D or 3D methods for dose distribution analysis have been proposed as evolutions of the Dose Volume Histogram (DVH) approaches. Those methods, collectively referred to as pixel- or voxel-based (VB) methods, evaluate local dose response patterns and go beyond the organ-based philosophy of Normal Tissue Complication Probability (NTCP) modelling. VB methods have been introduced in the context of radiation oncology in the very last years following the virtuous example of neuroimaging experience. In radiation oncology setting, dose mapping is a suitable scheme to compare spatial patterns of local dose distributions between patients who develop toxicity and who do not.In this critical review, we present the methods that include spatial dose distribution information for evaluating different toxicity endpoints after radiation therapy. The review addresses two main topics. First, the critical aspects in dose map building, namely the spatial normalization of the dose distributions from different patients. Then, the issues related to the actual dose map comparison, i.e. the viable options for a robust VB statistical analysis and the potential pitfalls related to the adopted solutions. To elucidate the different theoretical and technical issues, the covered topics are illustrated in relation to practical applications found in the existing literature.We conclude the overview on the VB philosophy in radiation oncology by introducing new phenomenological approaches to NTCP modelling that accounts for inhomogeneous organ radiosensitivity.  相似文献   

16.
Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors.  相似文献   

17.
IntroductionThe stereotactic irradiation is a new approach for low-risk prostate cancer. The aim of the present study was to evaluate a schema of stereotactic irradiation of the prostate with an integrated-boost into the tumor.Material and methodsThe prostate and the tumor were delineated by a radiologist on CT/MRI fusion. A 9-coplanar fields IMRT plan was optimized with three different dose levels: 1) 5 × 6.5 Gy to the PTV1 (plan 1), 2) 5 × 8 Gy to the PTV1 (plan 2) and 3) 5 × 6.5 Gy on the PTV1 with 5 × 8 Gy on the PTV2 (plan 3). The maximum dose (MaxD), mean dose (MD) and doses received by 2% (D2), 5% (D5), 10% (D10) and 25% (D25) of the rectum and bladder walls were used to compare the 3 IMRT plans.ResultsA dose escalation to entire prostate from 6.5 Gy to 8 Gy increased the rectum MD, MaxD, D2, D5, D10 and D25 by 3.75 Gy, 8.42 Gy, 7.88 Gy, 7.36 Gy, 6.67 Gy and 5.54 Gy. Similar results were observed for the bladder with 1.72 Gy, 8.28 Gy, 7.01 Gy, 5.69 Gy, 4.36 Gy and 2.42 Gy for the same dosimetric parameters. An integrated SBRT boost only to PTV2 reduced by about 50% the dose difference for rectum and bladder compared to a homogenous prostate dose escalation. Thereby, the MD, D2, D5, D10 and D25 for rectum were increased by 1.51 Gy, 4.24 Gy, 3.08 Gy, 2.84 Gy and 2.37 Gy in plan 3 compared to plan 1.ConclusionsThe present planning study of an integrated SBRT boost limits the doses received by the rectum and bladder if compared to a whole prostate dose escalation for SBRT approach.  相似文献   

18.
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was –0.3 ± 0.4%, −0.4 ± 0.6% and –0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were −29.0% and –7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.  相似文献   

19.
Stereotactic body radiotherapy (SBRT) distinguishes itself by necessitating more rigid patient immobilization, accounting for respiratory motion, intricate treatment planning, on-board imaging, and reduced number of ablative radiation doses to cancer targets usually refractory to chemotherapy and conventional radiation. Steep SBRT radiation dose drop-off permits narrow ''pencil beam'' treatment fields to be used for ablative radiation treatment condensed into 1 to 3 treatments.Treating physicians must appreciate that SBRT comes at a bigger danger of normal tissue injury and chance of geographic tumor miss. Both must be tackled by immobilization of cancer targets and by high-precision treatment delivery. Cancer target immobilization has been achieved through use of indexed customized Styrofoam casts, evacuated bean bags, or body-fix molds with patient-independent abdominal compression.1-3 Intrafraction motion of cancer targets due to breathing now can be reduced by patient-responsive breath hold techniques,4 patient mouthpiece active breathing coordination,5 respiration-correlated computed tomography,6 or image-guided tracking of fiducials implanted within and around a moving tumor.7-9 The Cyberknife system (Accuray [Sunnyvale, CA]) utilizes a radiation linear accelerator mounted on a industrial robotic arm that accurately follows patient respiratory motion by a camera-tracked set of light-emitting diodes (LED) impregnated on a vest fitted to a patient.10 Substantial reductions in radiation therapy margins can be achieved by motion tracking, ultimately rendering a smaller planning target volumes that are irradiated with submillimeter accuracy.11-13Cancer targets treated by SBRT are irradiated by converging, tightly collimated beams. Resultant radiation dose to cancer target volume histograms have a more pronounced radiation "shoulder" indicating high percentage target coverage and a small high-dose radiation "tail." Thus, increased target conformality comes at the expense of decreased dose uniformity in the SBRT cancer target. This may have implications for both subsequent tumor control in the SBRT target and normal tissue tolerance of organs at-risk. Due to the sharp dose falloff in SBRT, the possibility of occult disease escaping ablative radiation dose occurs when cancer targets are not fully recognized and inadequate SBRT dose margins are applied. Clinical target volume (CTV) expansion by 0.5 cm, resulting in a larger planning target volume (PTV), is associated with increased target control without undue normal tissue injury.7,8 Further reduction in the probability of geographic miss may be achieved by incorporation of 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET).8 Use of 18F-FDG PET/CT in SBRT treatment planning is only the beginning of attempts to discover new imaging target molecular signatures for gynecologic cancers.  相似文献   

20.

Aim

Review of main SBRT features and indications in primary tumors.

Background

Stereotactic body radiotherapy has been developed in the last few years. SBRT allows the hypofractionated treatment of extra cranial tumors, using either a single or limited number of dose fractions, and resulting in the delivery of a high biological effective dose with low toxicity.

Material and methods

SBRT requires a high level of accuracy for all phases of the treatment process: effective patient immobilization, precise target localization, highly conformed dosimetry and image guided systems for treatment verification. The implementation of SBRT in routine requires a careful considering of organ motion. Gating and tracking are effective ways to do so, and less invasive technologies “fiducials free” have been developed. Due to the hypofractionated scheme, the physician must pay attention to new dosimetric constraints in organ at risk and new radiobiological models are needed to assess the optimal fractionation and dose schemes.

Results

Currently, SBRT is safe and effective to treat primary tumors, which are otherwise untreatable with conventional radiotherapy or surgery. SBRT has quickly developed because of its excellent results in terms of tolerance and its high locoregional control rates. SBRT indications in primary tumors, such as lung primary tumors, have become a standard of care for inoperable patients. SBRT seems to be effective in many others indications in curative or palliative intent such as liver primary tumors, and novel indications and strategies are currently emerging in prostate cancer, head and neck tumor recurrences or pelvis reirradiations.

Conclusion

Currently, SBRT is mainly used when there is no other therapeutic alternative for the patient. This is due to the lack of randomized trials in these settings. However, the results shown in retrospective studies let us hope to impose SBRT as a new standard of care for many patients in the next few years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号