首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The current analyses of vegetation were aimed to study the different effects of environmental variables and plant species and communities interaction to these variables, identified threats to local vegetation and suggestion for remedial measures in the Mount Eelum, Swat, Pakistan. For assessment of environmental variability quantitative ecological techniques were used through quadrats having sizes of 2 × 2, 5 × 5 and 10 × 10 m2 for herbs, shrubs and trees respectively. Result of the present study revealed 124 plant species in the study area. Canonical Correspondence Analysis (CCA) was used to analyze the ecological gradient of vegetation. The environmental data and species abundance were used in CANOCO software version 4.5. The presence absence data of plant species were elaborated with Cluster and Two Way Cluster Analysis techniques using PC-ORD version 5 to show different species composition that resulted in five plant communities. Findings indicate that elevation, aspect and soil texture are the strongest variables that have significant effect on species composition and distribution of various communities shown with P value 0.0500. It is recommended to protect and use sensibly whole of the Flora normally and rare species particularly in the region.  相似文献   

2.
Phytosociological attributes of plant species and associated environmental factors were measured in order to identify the environmental gradients of major plant communities in the Naran Valley, Himalayas. The valley occupies a distinctive geographical setting on the edge of the Western Himalaya near the Hindukush range and supports a high biodiversity; pastoralism is the main land use. There have been no previous quantitative ecological studies in this region. This study was undertaken to (i) analyze and describe vegetation using classification and ordination techniques, (ii) identify environmental gradients responsible for plant community distributions and (iii) assess the anthropogenic pressures on the vegetation and identify priorities for conservation. Phytosociological characteristics of species were measured alongside environmental variables. A total of 198 species from 68 families were quantified at 144 stations along 24 transects across an elevation range of 2450–4100 m. Correspondence Analysis techniques i.e., Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) were used to determine vegetation–environment relationships. Results show vegetation changes with altitude from moist-cool temperate communities characterized by woody species, to more dry-cold subalpine and alpine herbaceous communities. Plant species diversity is optimal at middle altitudes (2800–3400 m); at lower altitudes (2400–2800 m) it is reduced by anthropogenic impacts and at higher altitudes (3400–4100 m) by shallow soils and high summer grazing pressure. A large number of plant species of conservation concern were identified in the study and an assessment made of the main threats to their survival.  相似文献   

3.
QuestionsDoes the plant species composition of Thandiani sub Forests Division (TsFD) correlate with edaphic, topographic and climatic variables? Is it possible to identify different plant communities in relation to environmental gradients with special emphasis on indicator species? Can this approach to vegetation classification support conservation planning?LocationThandiani sub Forests Division, Western Himalayas.MethodsQuantitative and qualitative characteristics of species along with environmental variables were measured using a randomly stratified design to identify the major plant communities and indicator species of the Thandiani sub Forests Division. Species composition was recorded in 10 × 2.5 × 2 and 0.5 × 0.5 m square plots for trees, shrubs and herbs, respectively. GPS, edaphic and topographic data were also recorded for each sample plot. A total of 1500 quadrats were established in 50 sampling stations along eight altitudinal transects encompassing eastern, western, northern and southern aspects (slopes). The altitudinal range of the study area was 1290 m to 2626 m above sea level using. The relationships between species composition and environmental variables were analyzed using Two Way Cluster Analysis (TWCA) and Indicator Species Analysis (ISA) via PCORD version 5.ResultsA total of 252 plant species belonging to 97 families were identified. TWCA and ISA recognized five plant communities. ISA additionally revealed that mountain slope aspect, soil pH and soil electrical conductivity were the strongest environmental factors (p  0.05) determining plant community composition and indicator species in each habitat. The results also show the strength of the environment-species relationship using Monte Carlo procedures.ConclusionsAn analysis of vegetation along an environmental gradient in the Thandiani sub Forests Division using the Braun-Blanquet approach confirmed by robust tools of multivariate statistics identified indicators of each sort of microclimatic zones/vegetation communities which could further be used in conservation planning and management not only in the area studied but in the adjacent regions exhibit similar sort of environmental conditions.  相似文献   

4.
《Acta Oecologica》2007,31(2):137-150
We examined the influence of disturbance history on the floristic composition of a single community type in karri forest, south-western Australia. Cover-abundance of 224 plant species and six disturbance and site-based environmental variables were recorded in 91, 20 m × 20 m quadrats. Numerical taxonomic and correlation approaches were used to relate these and 10 plant species-group variables based on origin, growth form and fire response. Ordination revealed no discernable pattern of sites based on floristic composition. However, all 10 species-group variables were significantly correlated with the ordination axes. Species richness within these groups varied with category and with respect to many of the disturbance and site variables. We encountered low diversity of vascular plants at the community level and limited diversity of growth forms. Thus most species were herbs (62.1%) or shrubs (30.3%), and there were no epiphytes and few species of trees or climbers. Although many introduced species were recorded (18.3% of all taxa), virtually all (83%) were herbs that demonstrated little persistence in the community, and there was limited evidence of transformer species. Time-since-fire (and other disturbance) influenced species richness more than the number of recent past fires because of a high proportion of ephemerals associated with the immediate post-fire period. Long-lived shrubs with soil stored seed dominate numerically, and in understorey biomass in comparison with neighboring vegetation types because of their greater flexibility of response following irregular, but intense disturbance events. However, interactions between nutrient status, regeneration mechanisms and community composition may be worthy of further investigation.  相似文献   

5.
QuestionsDoes the vegetation composition of the forests of Nandiar Valley correlate with climatic, topographic and edaphic variables? Is it possible to identify plant communities through indicator species in relation to environmental gradients? Can this approach of classification and ordination will be helpful for conservation planning?LocationForests of Nandiar Valley, Moist temperate Western Himalayas Pakistan.MethodsEighty stands were selected for quantitative and qualitative characteristic of vegetation between an elevations of 525–3817 m. Species composition was recorded by using 400 m long transects. GPS, climatic, edaphic and topographic data were recorded for each sampling site. The relationship between habitat types, species composition and distribution along with climatic, edaphic and topographic variables were analyzed using TWINSPAN, Cluster analysis and DCA ordination.ResultsSum 325 vascular plants species belonging to 97 families were recorded. Diversity index and species richness was maximum in the moist temperate zone. Classification and ordination showed that the variance in species data was 7.07. Two-ways indicator species analysis classified the vegetation into eight plant communities. Indicator species analysis revealed that slope aspect, wind speed, temperature, dew point, wet bulb, pH, organic matter and phosphorous were the strongest parameters (p  0.05) determining plant community composition and indicator species in each habitat. The results also show the strength of the environment – species relationship using Monte Carlo procedures. DCA ordination grouped different species having similar habitat and habitats having common species.ConclusionsThe multivariate analysis of the vegetation along with environmental variables of Nandiar valley confirmed the indicators of each sort of vegetation communities/microclimatic zones which could further be used in conservation planning and management not only in studied area but also in the adjacent regions as well as in the areas exhibit similar sort of climatic, edaphic and topographic conditions.  相似文献   

6.
We applied the floristic quality index (FQI) to vegetation data collected across a chronosequence of created wetland (CW) sites in Virginia ranging in age from one to 15 years post-construction. At each site, we also applied FQI to a nearby forested reference wetland (REF). We tested the performance of the index against a selection of community metrics (species richness, diversity, evenness, percent native species) and site attributes (age, soil physiochemical variables). FQI performed better when non-native species (C-value = 0) were removed from the index, and also when calculated within rather than across vegetation layers. A modified, abundance-weighted FQI showed significant correlation with community and environmental variables in the CW herbaceous layer and REF herbaceous and shrub-sapling layers based on Canonical correspondence analysis (CCA) ordination output. These results suggest that a “natives only”, layer-based version of the index is most appropriate for our region, and an abundance-weighted FQI may be useful for assessing floristic quality in certain layers. The abundance-weighted format has the advantage of preserving the “heritage” aspect of the species conservatism concept while also entraining the “ecology” aspect of site assessment based on relative abundances of the inhabiting species. FQI did not successfully relate CW sites to REF sites, bringing into question the applicability of the FQI concept in comparing created wetlands to reference wetlands, and by analogy, the use of forested reference wetlands in general to assess vegetation development in created sites.  相似文献   

7.
It has been hypothesized that a diverse vegetation cover with a high number of plant species and plant functional groups may be more effective at governing soil erosion processes than a vegetation cover with few species and fewer different plant functional groups.We investigated the influence of plant cover and diversity on interrill erosion on a disturbed alpine site. Rainfall simulations were conducted on micro-scale plots (25 × 25 cm) with different degrees of vegetation cover and plant functional group diversity. We selected plots with 10%, 30% and 60% of vegetation cover containing different plant functional groups: (i) grasses, (ii) forbs, (iii) cryptogams (moss and/or lichens), and all possible combinations of these three groups. On each plot a rain intensity of 375 ml min?1 (30 mm) was applied for 5 min. The degree of vegetation cover had the largest effect on interrill erosion. At 60% vegetation cover, the sediment yield was reduced by 83% in comparison to the un-vegetated ground. In the plots with 60% vegetation cover, an increase in functional group diversity decreased the sediment yield significantly. Sediment yield was three times lower in the presence of three plant functional groups than in systems with one plant functional group. Combinations of plant functional groups including grasses reduced the sediment yield more than other combinations.The findings of this study support the view that beside the re-establishment of a closed vegetation cover, a high plant functional diversity can be a relevant factor to further reduce interrill erosion at disturbed sites in alpine ecosystems.  相似文献   

8.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

9.
《Acta Oecologica》2006,29(2):155-164
We studied three species of columnar cacti in the genus Neobuxbaumia which differ in their degree of rarity: Neobuxbaumia macrocephala (the rarest), Neobuxbaumia tetetzo (intermediate), and Neobuxbaumia mezcalaensis (the most common). To investigate the ecological factors that limit their distribution and abundance, we surveyed 80 localities within the region of Tehuacan-Cuicatlán, in Central Mexico. At each locality we measured several environmental variables, and the density of the Neobuxbaumia populations present. We used a principal component analysis (PCA) to identify the factors that are associated to the presence/absence of each species. Additionally, we carried out multiple regressions between environmental variables and population density to test whether the variation in these variables was related to changes in abundance. The results show that factors significantly affecting the distribution of these species are mean annual temperature, altitude, rainfall, and soil properties such as texture and organic matter content. N. mezcalaensis reaches maximum population densities of 14,740 plants per ha (average density = 3943 plants per ha) and is associated with localities with relatively abundant rainfall. N. tetetzo shows maximum population densities of 14,060 plants per ha (average = 3070 plants per ha), and is associated with sites located at high latitudes and with high phosphorous content in the soil. The rarest species, N. macrocephala, shows maximum densities of 1180 plants per ha (average = 607 plants per ha) and is associated with localities with high soil calcium content. The distribution of this species is limited to sites with specific values of the environmental variables recorded, conferring it a high habitat specificity which accounts for its rarity.  相似文献   

10.
Agricultural improvement (fertilisation, liming, intensification of grazing) of acidic upland pastures results in loss of indigenous flora and notable changes in microbial community structure. Such practices have recently raised concerns regarding the possible impacts on natural ecosystem biodiversity and functioning. The effects of synthetic sheep urine (SSU) and plant species on fungal community structure in upland grassland microcosms were investigated. Plant species typical of agriculturally unimproved (Agrostis capillaris) and improved (Lolium perenne) pastures were treated with low, medium or high concentrations of SSU, with harvests carried out 10 d and 50 d after SSU application. Root biomass was negatively affected by SSU addition whereas shoot biomass did not display any significant change. Fungal richness (number of operational taxonomic units) was negatively correlated with SSU concentration (p < 0.001), and also with time (p < 0.001).Multi-dimensional scaling plots revealed significant changes in fungal community composition, depending on concentration of SSU and plant species type, while canonical correspondence analysis also emphasised the importance of interacting environmental variables. In addition, SIMPER analyses supported the finding that shifts in fungal community composition under different SSU and plant treatments had occurred. Overall, while SSU appeared to be influential in determining fungal community structure, community changes were largely driven by interacting environmental factors. This study contributes to our understanding of the potential implications of intensified farming, in particular increased pressure from grazing animals, on fungal community structure in semi-natural grassland systems.  相似文献   

11.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

12.
Plant biomass is a key parameter for estimating terrestrial ecosystem carbon (C) stocks, which varies greatly as a result of specific environmental conditions. Here, we tested environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. We found that above-ground biomass (AGB) and below-ground biomass (BGB) had a similar change trend in the order of Stipa bungeana > Leymus secalinus > Artemisia sacrorum > Artemisia scoparia, whereas shoot ratio (R/S) displayed an opposite change trend. There was a significantly positive linear relationship between the AGB and BGB, regardless of plant species (p < 0.05). Furthermore, more than 50% of the AGB were found in 20–50 cm of plant height in Compositae plants (A. sacrorum, A. scoparia), whereas over 60% of the AGB were found in 20–80 cm of plant height in Gramineae plants (S. bungeana, L. secalinus). For each plant species, more than 75% of the BGB was distributed in 0–10 cm soil depth, and 20% was distributed in 10–20 cm soil depth, while less than 5% was distributed in 20–40 cm soil depth. Further, AGB and BGB were highly affected by environmental driving factors (soil properties, plant traits, topographic properties), which were identified by the structural equation model (SEM) and the generalized additive models (GAMs). In addition, AGB was directly affected by plant traits, and BGB was directly affected by soil properties, and soil properties associated with plant traits that affected AGB and BGB through interactive effects were 9.12% and 3.59%, respectively. However, topographic properties had a weak influence on ABG and BGB (as revealed by the lowest total pathway effect). Besides, soil organic carbon (SOC), soil microbial biomass carbon (MBC), and plant height had a higher relative contribution to AGB and BGB. Our results indicate that environmental driving factors affect plant biomass in natural grassland in the Loess Plateau.  相似文献   

13.
The identification of shape and size of sampling units that maximises the number of plant species recorded in multiscale sampling designs has major implications in conservation planning and monitoring actions. In this paper we tested the effect of three sampling shapes (rectangles, squared, and randomly shaped sampling units) on the number of recorded species. We used a large dataset derived from the network of protected areas in the Siena Province, Italy. This dataset is composed of plant species occurrence data recorded from 604 plots (10 m × 10 m), each divided in a grid of 16 contiguous subplot units (2.5 m × 2.5 m). Moreover, we evaluated the effect of plot orientation along the main environmental gradient, to examine how the selection of plot orientation (when elongated plots are used) influences the number of species collected. In total, 1041 plant species were recorded from the study plots. A significantly higher species richness was recorded by the random arrangement of 4 subplots within each plot in comparison to the ‘rectangle’ and ‘square’ shapes. Although the rectangular shape captured a significant larger number of species than squared ones, plot orientation along the main environmental gradient did not show a systematic effect on the number of recorded species. We concluded that the choice of whether or not using elongated (rectangular) versus squared plots should dependent upon the objectives of the specific survey with squared plots being more suitable for assessing species composition of more homogeneous vegetation units and rectangular plots being more suited for recording more species in the pooled sample of a large area.  相似文献   

14.
The present study was conducted to elaborate vegetation composition structure to analyze role of edaphic and topographic factors on plant species distribution and community formation during 2013–14. A mixture of quadrat and transect methods were used. The size of quadrat for trees shrubs and herbs were 10 × 5, 5 × 2, 1 × 1 meter square respectively. Different phytosociological attribute were measured at each station. Primary results reported 123 plant species belong to 46 families. Asteraceae and Lamiaceae were dominant families with 8 species each. PCORD version 5 were used for Cluster and Two Way Cluster Analyses that initiated 4 plant communities within elevation range of 529–700 m from sea level. Indicator species analyses (ISA) were used to identify indicator species of each community. CANOCO Software (version 4.5) was used to measure the influence of edaphic and topographic variables on species composition, diversity and community formation. Whereas Canonical Correspondence Analysis (CCA) was used to measure the effect of environmental variables which showed elevation and aspect were the stronger environmental variable among topographic and CaCO3 contents, electric conductivity, soil pH were the stronger edaphic factors in determination of vegetation and communities of the Bheer Hills. Grazing pressure was one of the main anthropogenic factors in this regard.  相似文献   

15.
Plant trait measurement is a very powerful and promising method for assessing the effects of land use change on ecosystem behavior in grasslands, but it is very time-consuming. Hence we pose the following questions for simplifying diagnosis and monitoring: (i) are plant traits (PTs) similar between plant life forms (PLF: grasses, rosettes, upright forbs, legumes) within a plant community? (ii) is it possible to define the main plant community characteristics by measuring traits on one PLF or a limited number of dominant species?Six PTs known for their ability to characterize the capacity of species to exploit resource-rich or -poor environments and for their competitive dominance in response to disturbance (specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), C and N contents, flowering time) were measured on the species of 18 plant communities located in Central Pyrenees. The experiment combined 2 fertility levels and 3 defoliation regimes (cutting, grazing). Comparisons were made between the weighted values at community, PLF and two dominant species levels. Regression analysis shows that there were significant correlations between grasses and rosettes for 4 PTs. For H, N and C:N ratio, data for both grass and rosette PLFs were close to the bisecting line. The largest difference in the intercept was observed for LDMC. On the basis of plant traits weighted for all the species, plant communities were ranked in similar ways for SLA and H (Spearman r > 0.93; p < 0.001) and to a lesser extent for LDMC (r = 0.72; p < 0.001). Convergence in weighted plant traits for different PLFs within a plant community mean that in the studied grasslands, defoliation regime and nutrient availability act as strong filters that impose, at least at PLF level, very similar PFTs. This determines a specific local community structure and composition. An application of this result in managed grasslands is the possibility of focusing on one PLF or a limited number of species for vegetation diagnosis and monitoring.  相似文献   

16.
High mountain grasslands offer multiple goods and services to society but are severely threatened by improper land use practices such as abandonment or rapid intensification. In order to reduce abandonment and strengthen the common extensive agricultural practice a sustainable land use management of high mountain grasslands is needed. A spatially detailed yield assessment helps to identify possible meadows or, on the contrary, areas with a low carrying capacity in a region, making it easier to manage these sites. Such assessments are rarely available for remote and inaccessible areas. Remotely sensed vegetation indices are able to provide valuable information on grassland properties. These indices tend, however, to saturate for high biomass. This affects their applicability to assessments of high-yield grasslands.The main aim of this study was to model a spatially explicit grassland yield map and to test whether saturation issues can be tackled by consideration of plant species composition in the modelling process. The high mountain grassland of the subalpine belt (1800 – 2500 m a.s.l.) in the Kazbegi region, Greater Caucasus, Georgia, was chosen as test site for its strong species composition and yield gradients.We first modelled the species composition of the grassland described as metrically scaled gradients in the form of ordination axes by random forest regression. We then derived vegetation indices from Rapid Eye imagery, and topographic variables from a digital elevation model, which we used together with the multispectral bands as predictive variables. For comparison, we performed two yield models, one excluding the species composition maps and one including the species composition map as predictors. Moreover, we performed a third individual model, with species composition as predictors and a split dataset, to produce the final yield map.Three main grassland types were found in the vegetation analysis: Hordeum violaceum-meadows, Gentianella caucasea-grassland and Astragalus captiosus-grassland. The three random forest regression models for the ordination axes explained 64%, 33% and 46% of the variance in species composition. Independent validation of modelled ordination scores against a validation data set resulted in an R2 of 0.64, 0.32 and 0.46 for the first, second and third axes, respectively. The model based on species composition resulted in a R2 = 0.55, whereas the benchmark model showed weaker relationships between yield and the multispectral reflectance, vegetation indices, and topographical parameters (R2 = 0.42). The final random forest yield model used to derive the yield map resulted in 62% variance explained and an R2 = 0.64 between predicted and observed biomass. The results further indicate that high yields are generally difficult to predict with both models.The benefit of including a species composition map as a predictor variable for grassland yield lies in the preservation of ecologically meaningful features, especially the occurrence of high yielding vegetation type of Hordeum violaceum meadows is depicted accurately in the map. Even though we used a gradient based design, sharp boundaries or immediate changes in productivity were visible, especially in small structures such as arable fields or roads (Fig. 6b), making it a valuable tool for sustainable land use management. The saturation effect however, was mitigated by using species composition as predictor variables but is still present at high yields.  相似文献   

17.
《Acta Oecologica》2007,31(2):216-222
We investigated whether agri-environmental incentive payments help to maintain biodiversity. We studied the effect of agricultural management intensity on vascular plant species richness and plant assemblages of mountain meadows in Switzerland. Other factors such as slope, altitude or accessibility (distance from farmyard) were also taken into account. Vegetation sampling was conducted at 69 sites representing five different management types, differing with respect to nutrient input and soil moisture: (i) dry extensive meadows; (ii) extensive meadows; (iii) dry low-intensive meadows; (iv) low-intensive meadows; (v) intensive meadows. There was a significant negative relationship between plant species richness and management intensity: The mean number of plant species per management type declined markedly when management intensity increased, although dry sites harboured slightly more species regardless of management intensity (dry extensive > dry low intensive > extensive > low intensive >> intensive meadows). Species richness was clearly affected by management intensity, but not so by slope, altitude or accessibility. There was a gradual shift in plant assemblages among management types with only intensive meadows differing from the other four types of differently managed meadows. We therefore found, in contrast to many studies done in the European lowlands, positive effects of incentive payments on plant species richness.  相似文献   

18.
《Aquatic Botany》2005,83(3):227-238
Incidence data of two native submerged aquatic macrophytes (Egeria najas Planch. and Egeria densa Planch.) were obtained in eight arms of a large (1350 km2) subtropical reservoir (Itaipu Binacional Reservoir, Brazil-Paraguay). Environmental variables were measured simultaneously. Two large-scale surveys in the same localities identified by a global positioning system were carried out in April 1999 (n = 235) and January 2001 (n = 230). Logistic regressions were used to test the effect of environmental variables on the likelihood of E. najas and E. densa presence or absence. The two species were found under different environmental conditions: conductivity, light attenuation coefficient (k) and fetch were, in this order, the most important environmental variables in predicting the probability of occurrence of E. najas, whereas light attenuation coefficient was the main predictor of the probability of occurrence of E. densa. Thus, both species were negatively affected by the light attenuation coefficient. However, this effect was stronger in E. densa. The small area occupied by these species may be accounted for by the permanent high turbidity of Itaipu Reservoir. Additionally, the dominance of E. najas over of E. densa can be explained by the probably higher light requirements of E. densa. In other reservoirs worldwide, with higher water transparency, the opposite is frequently true. Between 1999 and 2001, an episodic water-level drawdown (5 m) caused the disappearance of submerged vegetation. After water-level normalization, previous vegetation presence (in 1999) was an important predictor of the probability of occurrence of E. najas in 2001.  相似文献   

19.
The disruption of the natural post-disturbance recovery process, either by changes in disturbance regime or by another disturbance, can trigger transitions to alternative degraded states. In a scenario of high disturbance pressure on ecological systems, it is essential to detect recovery indicators to define the period when the system needs more protection as well as the period when the system supports certain use pressure without affecting its resilience. Recovery indicators can be identified by non-linear changes in structural and functional variables. Fire largely modulates the dynamic and stability of plant communities worldwide, and is this the case in northwestern (NW) Patagonia. The ultimate goal of this study is to propose a structural–functional approach based on a reference system (i.e. chronosequence) as a tool to detect post-disturbance recovery indicators in forests from NW Patagonia. In NW Patagonia (40–42°S), we sampled 25 Austrocedrus chilensis and Nothofagus spp. communities differing in post-fire age (0.3–180 years). In each community we recorded structural (woody species cover and height, solar radiation, air temperature, relative humidity) and functional (annual recruitment of woody and tree species) attributes. We modeled these attributes in function of post-fire age and analized the relationship between a functional attribute and a Structural Recovery Index (SRI). Communities varying in time-since-last-fire were structurally and functionally different. Moreover, response variables showed non-linear changes along the chronosequence, allowing the selection of recovery indicators. We suggest to use vegetation variables instead of environmental variables as structural recovery indicators. Horizontal and Vertical Vegetation Heterogeneity indices provided the information necessary to describe vegetation spatial reorganization after fire. Tree species annual recruitment was a good indicator of the functional recovery of forest communities. The relationship between a functional attribute and SRI allowed us to detect phases with high- and low-risk of degradation during post-fire succession. High-risk phases (<36 years old) had the highest horizontal vegetation heterogeneity and scarce tree seedling density (<7000 seedlings ha−1 year−1). Whereas, low-risk phases (>36 years old) had the highest vertical vegetation heterogeneity and tree species seedling density (>10,000 seedlings ha−1 year−1). Due to the low structural–functional levels, communities at high-risk phases would be more vulnerable to antropic pressure (e.g. livestock raising, logging) than communities at low-risk phases. The proposed approach contributes to the sustainable management of forest communities because it allows to estimate the minimum structural–functional levels from which forest communities could be harvested.  相似文献   

20.
The main aim of this paper was to study the responses of mountain plants in relation to the time of snowmelt. Three mountain areas situated along an oceanic–continental gradient were selected as study sites, and the sample plots ranged from 182 m below to 473 m above the climatic forest limit. In total, 185 quadrats (2 m × 2 m), stratified to include only oligotrophic and mesotrophic mountain vegetation types, were selected to represent a topographic range along altitudinal gradients. In each quadrat, the percentage groundcover of the species was recorded. From the beginning of April until July 2004, snow thickness was monitored, and the Julian day when the snow had completely melted was determined for all plots. The relationship between species abundances and Julian day of snowmelt were analysed by two different numerical methods: (1) relative values for species optimum and tolerance were given by Detrended Canonical Correspondence Analysis (DCCA) with Julian day of snowmelt as the constraining variable. (2) Species responses were modelled by Generalized Linear Models (GLM). For species with significant unimodal responses, optimum and tolerance were calculated. For species with significant linear models, different species response models were identified by the regression intercepts. One hundred and twenty six species (taxa) were tested, and 103 evidenced statistically significant (p < 0.05) distribution responses. Several common alpine plants had a distribution that appeared to be independent of snow. On the basis of the results of the numerical methods, the species were separated into nine Snow Indicator (SI) classes, as a parallel to the Ellenberg indicator values. The species’ SI values were used to calculate weighted average SI values to examine the relationships between previously described plant communities and vegetation transects which experience different snow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号