首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PurposeTo evaluate the spatial accuracy of a frameless cone-beam computed tomography (CBCT)-guided cranial radiosurgery (SRS) using an end-to-end (E2E) phantom test methodology.Methods and materialsFive clinical SRS plans were mapped to an acrylic phantom containing a radiochromic film. The resulting phantom-based plans (E2E plans) were delivered four times. The phantom was setup on the treatment table with intentional misalignments, and CBCT-imaging was used to align it prior to E2E plan delivery. Comparisons (global gamma analysis) of the planned and delivered dose to the film were performed using a commercial triple-channel film dosimetry software. The necessary distance-to-agreement to achieve a 95% (DTA95) gamma passing rate for a fixed 3% dose difference provided an estimate of the spatial accuracy of CBCT-guided SRS. Systematic (∑) and random (σ) error components, as well as 95% confidence levels were derived for the DTA95 metric.ResultsThe overall systematic spatial accuracy averaged over all tests was 1.4 mm (SD: 0.2 mm), with a corresponding 95% confidence level of 1.8 mm. The systematic (Σ) and random (σ) spatial components of the accuracy derived from the E2E tests were 0.2 mm and 0.8 mm, respectively.ConclusionsThe E2E methodology used in this study allowed an estimation of the spatial accuracy of our CBCT-guided SRS procedure. Subsequently, a PTV margin of 2.0 mm is currently used in our department.  相似文献   

2.
AimThe aim of this study was to determine the Inflection Points (IPs) of flattening filter free (FFF) CyberKnife dose profiles for cone-based streotactic radiotherapy. In addition, dosimetric field sizes were determined.BackgroundThe increased need for treatment in the early stages of cancer necessitated the treatment of smaller tumors. However, efforts in that direction required the modeling accuracy of the beam. Removal of the flattening filter (FF) from the path of x-ray beam has provided the solution to those efforts, but required a different normalization approach for the beam to ensure the delivery of the dose accurately. As a solution, researchers proposed a normalization factor based on IPs.Materials and methodsMeasurements using microDiamond (PTW 60019), Diode SRS (PTW 60018) and Monte Carlo (MC) calculations of dose profiles were completed at SAD 80 cm and 5 cm depth for 15–60 mm cones. Performance analysis of detectors with respect to MC calculation was carried out. Gamma evaluation method was used to determine achievable acceptability criteria for FFF CyberKnife beams.ResultsAcceptability within (3%–0.5 mm) was found to be anachievable criterion for all dose profile measurements of the cone beams used in this study. To determine the IP, the first and second derivatives of the dose profile were determined via the cubic spline interpolation technique.ConclusionDerivatives of the interpolated profiles showed that locations of IPs and 50% isodose points coincide.  相似文献   

3.
The aim of this study was to use different gamma histogram criteria for the comparison of planned dose with irradiated dose distribution and find that what percent of pixels passing a certain criteria imitate a good quality plan. The dose was calculated for 156 patients by inverse planning optimization using the Corvus treatment planning system. Gafchromic films in combination with 2571 0.6 cm3 Farmer type ionization chamber and Farmer 2570/1 electrometer from NE Technology were used to measure the delivered dose in solid water phantom. All the measurements were performed on Varian CL21EX linear accelerator (Varian Medical Systems, Palo Alto, CA) fitted with a Millennium 120 leaf collimator. In this study the mean value of the percent of passing pixels within the region of interest under the criterion of 3% DD and 3 mm DTA is 90.2 ± 7.1% for head and neck cases and 92.2 ± 5.8% for non-head and neck cases. If we choose the criteria of 3% DD and 3 mm DTA then 96.3% head and neck plans have the percent of passing pixels  75% and 95.1% non-head and neck plans have the percent of passing pixels  80%. It is evident from the results of this study that the criterion of 5% DD and 3 mm DTA with the percent of passing pixels  90 for non-head and neck cases while the percent of passing pixels  85 for head and neck cases endorse that a plan is good. The results of this study may be useful for other institutions which use verification software and EBT films for patient specific IMRT QA.  相似文献   

4.
PurposeRobotic radiosurgery demands comprehensive delivery quality assurance (DQA), but guidelines for commissioning of the DQA method is missing. We investigated the stability and sensitivity of our film-based DQA method with various test scenarios and routine patient plans. We also investigated the applicability of tight distance-to-agreement (DTA) Gamma-Index criteria.Methods and materialWe used radiochromic films with multichannel film dosimetry and re-calibration and our analysis was performed in four steps: 1) Film-to-plan registration, 2) Standard Gamma-Index criteria evaluation (local-pixel-dose-difference ≤2%, distance-to-agreement ≤2 mm, pass-rate ≥90%), 3) Dose distribution shift until maximum pass-rate (Maxγ) was found (shift acceptance <1 mm), and 4) Final evaluation with tight DTA criteria (≤1 mm). Test scenarios consisted of purposefully introduced phantom misalignments, dose miscalibrations, and undelivered MU. Initial method evaluation was done on 30 clinical plans.ResultsOur method showed similar sensitivity compared to the standard End-2-End-Test and incorporated an estimate of global system offsets in the analysis. The simulated errors (phantom shifts, global robot misalignment, undelivered MU) were detected by our method while standard Gamma-Index criteria often did not reveal these deviations. Dose miscalibration was not detected by film alone, hence simultaneous ion-chamber measurement for film calibration is strongly recommended. 83% of the clinical patient plans were within our tight DTA tolerances.ConclusionOur presented methods provide additional measurements and quality references for film-based DQA enabling more sensitive error detection. We provided various test scenarios for commissioning of robotic radiosurgery DQA and demonstrated the necessity to use tight DTA criteria.  相似文献   

5.
New version 13.6.23 of the electron Monte Carlo (eMC) algorithm in Varian Eclipse™ treatment planning system has a model for 4 MeV electron beam and some general improvements for dose calculation. This study provides the first overall accuracy assessment of this algorithm against full Monte Carlo (MC) simulations for electron beams from 4 MeV to 16 MeV with most emphasis on the lower energy range. Beams in a homogeneous water phantom and clinical treatment plans were investigated including measurements in the water phantom. Two different material sets were used with full MC: (1) the one applied in the eMC algorithm and (2) the one included in the Eclipse™ for other algorithms. The results of clinical treatment plans were also compared to those of the older eMC version 11.0.31. In the water phantom the dose differences against the full MC were mostly less than 3% with distance-to-agreement (DTA) values within 2 mm. Larger discrepancies were obtained in build-up regions, at depths near the maximum electron ranges and with small apertures. For the clinical treatment plans the overall dose differences were mostly within 3% or 2 mm with the first material set. Larger differences were observed for a large 4 MeV beam entering curved patient surface with extended SSD and also in regions of large dose gradients. Still the DTA values were within 3 mm. The discrepancies between the eMC and the full MC were generally larger for the second material set. The version 11.0.31 performed always inferiorly, when compared to the 13.6.23.  相似文献   

6.
7.
AimTo assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction.BackgroundImplementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution.Materials and methodsSeventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed.ResultsIn 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively.ConclusionSufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.  相似文献   

8.
The impact of a rectal spacer and an increased near maximum target dose in VMAT prostate SBRT is studied.For a group of 11 patients (35 Gy-in-five-fractions VMAT prostate SBRT) a set of 4 plans were generated, namely two VMAT plans, with D2%  37.5 Gy (Hom) and with D2%  40.2 Gy (Het), were created for each of two CT scans taken before (NoSpc) and after (Spc) transperineal spacer insertion. Consequently the methodology for parameter invariant TCP (tumor control probability) plan ranking was applied for comparison of the plans in terms of tumor control. NTCPs (normal tissue complication probabilities) were calculated for rectum and bladder using Lyman’s model.For all 11 patients the TCP plan ranking has shown that the Het plans would perform considerably better in TCP terms than the Hom ones. The plans without rectal spacer were ranked worse compared to those with rectal spacer except for one set of Hom plans. The calculated NTCPs for rectum produced by the Het plans were quite similar to the NTCPs of the Hom ones. The rectal NTCPs of the Hom Spc plans were always lower than the NTCPs of the Hom NoSpc plans. The NTCP values for bladder were extremely low in all cases.The use of rectal spacer leads in general to lower risk of rectal complications, as expected, and even to better tumor control. Plans with increased near maximum target dose (D2%  40.2 Gy) are expected to perform much better in terms of tumor control than those with D2%  37.5 Gy.  相似文献   

9.
PurposeThe log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error.Methods and materialsModified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5 mm in opposite directions and systematic leaf shifts: ±1.0 mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks.ResultsFor MLC leaves calibrated within ±0.5 mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32 ± 0.27% and 0.82 ± 0.17 Gy for PTV and spinal cord, respectively, and in prostate plans 1.22 ± 0.36%, 0.95 ± 0.14 Gy, and 0.45 ± 0.08 Gy for PTV, rectum, and bladder, respectively.ConclusionsIn this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy.  相似文献   

10.
This study investigates the impact of breathing motion on proton breast treatment plans. Twelve patients with CT datasets acquired during breath-hold-at-inhalation (BHI), breath-hold-at-exhalation (BHE) and in free-breathing (FB) were included in the study. Proton plans were designed for the left breast for BHI and subsequently recalculated for BHE or designed for FB and recalculated for the extreme breath-hold phases. The plans were compared from the point of view of their target coverage and doses to organs-at-risk. The median amplitude of breathing motion determined from the positions of the sternum was 4.7 mm (range 0.5–14.6 mm). Breathing motion led to a degradation of the dose coverage of the target (heterogeneity index increased from 4–7% to 8–11%), but the degraded values of the dosimetric parameters of interest fulfilled the clinical criteria for plan acceptance. Exhalation decreased the lung burden [average dose 3.1–4.5 Gy (RBE)], while inhalation increased it [average dose 5.8–6.8 Gy (RBE)]. The individual values depended on the field arrangement. Smaller differences were seen for the heart [average dose 0.1–0.2 Gy (RBE)] and the LAD [1.9–4.6 Gy (RBE)]. Weak correlations were generally found between changes in dosimetric parameters and respiratory motion. The differences between dosimetric parameters for various breathing phases were small and their expected clinical impact is consequently quite small. The results indicated that the dosimetric parameters of the plans corresponding to the extreme breathing phases are little affected by breathing motion, thus suggesting that this motion might have little impact for the chosen beam orientations with scanned proton beams.  相似文献   

11.
PurposeTo quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation Therapy (mp-ssIMRT)).MethodsTen patients were retrospectively planned with VMAT according to three institution’s protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced treatment errors included Multi Leaf Collimator (MLC) shifts, MLC field size (MLCfs), gantry and collimator errors. A change of more than 5% in most selected dose metrics was considered to have potential clinical impact. The original patient plan total Monitor Units (MUs) were correlated to the total number of dose metrics exceeded.ResultsThe impact of different errors was consistent, with ap-VMAT plans (two institutions) showing larger dose deviations than mp-VMAT created plans (one institution). Across all institutions’ VMAT plans the significant errors included; ±5° for the collimator angle, ±5 mm for the MLC shift and +1, ±2 and ±5 mm for the MLC field size. The total number of dose metrics exceeding tolerance was positively correlated to the VMAT total plan MUs (r = 0.51, p < 0.001), across all institutions and techniques.ConclusionsDifferences in VMAT robustness to simulated errors across institutions occurred due to planning method differences. Whilst ap-VMAT was most sensitive to MLC errors, it also produced the best quality treatment plans. Mp-ssIMRT was most robust to errors. Higher VMAT treatment plan complexity led to less robust plans.  相似文献   

12.
13.
14.
AimTo evaluate the target dose coverage for lung stereotactic body radiotherapy (SBRT) using helical tomotherapy (HT) with the internal tumor volume (ITV) margin settings adjusted according to the degree of tumor motion.BackgroundLung SBRT with HT may cause a dosimetric error when the target motion is large.Materials and methodsTwo lung SBRT plans were created using a tomotherapy planning station. Using these original plans, five plans with different ITV margins (4.0–20.0 mm for superior-inferior [SI] dimension) were generated. To evaluate the effects of respiratory motion on HT, an original dynamic motion phantom was developed. The respiratory wave of a healthy volunteer was used for dynamic motion as the typical tumor respiratory motion. Five patterns of motion amplitude that corresponded to five ITV margin sizes and three breathing cycles of 7, 14, and 28 breaths per minute were used. We evaluated the target dose change between a static delivery and a dynamic delivery with each motion pattern.ResultsThe target dose difference increased as the tumor size decreased and as the tumor motion increased. Although a target dose difference of <5 % was observed at ≤10 mm of tumor motion for each condition, a maximum difference of -9.94 % ± 7.10 % was observed in cases of small tumors with 20 mm of tumor motion under slow respiration.ConclusionsMinimizing respiratory movement is recommended as much as possible for lung SBRT with HT, especially for cases involving small tumors.  相似文献   

15.
IntroductionTo commission the Monte Carlo (MC) algorithm based model of CyberKnife robotic stereotactic system (CK) and evaluate the feasibility of patient specific QA using the ArcCHECK cylindrical 3D-array (AC) with Multiplug inserts (MP).ResultsFour configurations were used for simple beam setup and two for patient QA, replacing water equivalent inserts by lung. For twelve collimators (5–60 mm) in simple setup, mean (SD) differences between MC and RayTracing algorithm (RT) of the number of points failing the 3%/1 mm gamma criteria were 1(1), 1(3), 1(2) and 1(2) for the four MP configurations. Tracking fiducials were placed within AC for patient QA. Single lung insert setup resulted in mean gamma-index 2%/2 mm of 90.5% (range [74.3–95.9]) and 82.3% ([66.8–94.5]) for MC and RT respectively, while 93.5% ([86.8–98.2]) and 86.2% ([68.7–95.4]) in presence of largest inhomogeneities, showing significant differences (p < 0.05).DiscussionAfter evaluating the potential effects, 1.12 g/cc PMMA and 0.09 g/cc lung material assignment showed the best results. Overall, MC-based model showed superior results compared to RT for simple and patient specific testing, using a 2%/2 mm criteria. Results are comparable with other reported commissionings for flattening filter free (FFF) delivery. Further improvement of MC calculation might be challenging as Multiplan has limited material library.ConclusionsThe AC with Multiplug allowed for comprehensive commissioning of CyberKnife MC algorithm and is useful for patient specific QA for stereotactic body radiation therapy. MC calculation accuracy might be limited due to Multiplan’s insufficient material library; still results are comparable with other reported commissioning measurements using FFF beams.  相似文献   

16.
PurposeStatic beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control.MethodsA set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3 mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis.Results13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were −0.18 ± 1.54% and 0.00 ± 1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3 mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results.ConclusionThis study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point.  相似文献   

17.
PurposeTo study the influence of Multileaf Collimator (MLC) leaf width in radiosurgery treatment planning for Volumetric Modulated Arc Therapy (VMAT) and 3D Dynamic Conformal Arc Therapy (3D-DCA).Material and methods16 patients with solitary brain metastases treated with radiosurgery via the non-coplanar VMAT were replanned for the 3D-DCA. For each planning technique two MLC leaf width sizes were utilized, i.e. 5 mm and 2.5 mm. These treatment plans were compared using dosimetric indices (conformity, gradient and mean dose for brain tissue) and the normal tissue complication probability (NTCP).ResultsAn improvement in planning quality for VMAT was observed versus 3D-DCA for any MLC leaf width, mainly with regards to dose conformity and to a lesser extent regards dose gradient. No significant difference was observed for any of both techniques using smaller leaf width. However, dose gradient was improved in favor of the 2.5 mm MLC for either of both techniques (15% VMAT and 10% 3D-DCA); being noticeable for lesions smaller than 10 cm3. Nonetheless, the NTCP index was not significantly affected by variations in the dose gradient index.ConclusionsThis, our present study, suggests that the use of an MLC leaf width of 2.5 mm via the noncoplanar VMAT and 3D-DCA techniques provides improvement in terms of dose gradient for small volumes, over those results obtained with an MLC leaf width of 5 mm. The 3D-DCA does also benefit from MLC leaf widths of a smaller size, mainly in terms of conformity.  相似文献   

18.
PurposeExternal dosimetry audits give confidence in the safe and accurate delivery of radiotherapy. The RTTQA group have performed an on-site audit programme for trial recruiting centres, who have recently implemented static or rotational IMRT, and those with major changes to planning or delivery systems.MethodsMeasurements of reference beam output were performed by the host centre, and by the auditor using independent equipment. Verification of clinical plans was performed using the ArcCheck helical diode array.ResultsA total of 54 measurement sessions were performed between May 2014 and June 2016 at 28 UK institutions, reflecting the different combinations of planning and delivery systems used at each institution. Average ratio of measured output between auditor and host was 1.002 ± 0.006. Average point dose agreement for clinical plans was −0.3 ± 1.8%. Average (and 95% lower confidence intervals) of gamma pass rates at 2%/2 mm, 3%/2 mm and 3%/3 mm respectively were: 92% (80%), 96% (90%) and 98% (94%). Moderately significant differences were seen between fixed gantry angle and rotational IMRT, and between combination of planning systems and linac manufacturer, but not between anatomical treatment site or beam energy.ConclusionAn external audit programme has been implemented for universal and efficient credentialing of IMRT treatments in clinical trials. Good agreement was found between measured and expected doses, with few outliers, leading to a simple table of optimal and mandatory tolerances for approval of dosimetry audit results. Feedback was given to some centres leading to improved clinical practice.  相似文献   

19.
IntroductionAim of the present study is to evaluate homolateral and contralateral hippocampus (H-H, C-H, respectively) dose during Fractionated Stereotactic Radiotherapy (FSRT) or Radiosurgery (SRS) for brain metastases (BM).Materials & methodsPatients with BM < 5, size  30 mm, KPS  80 and a life expectancy > 3 months, were considered for SRS/FSRT (total dose 15–30 Gy, 1–5 fractions). For each BM, a Flattening Filter Free (FFF) Volumetric Modulated Arc Therapy (VMAT) plan was generated with one or two arcs. Hippocampi were not considered during optimizations phase and were contoured and evaluated retrospectively in terms of dose: the Dmedian, Dmean, D0.1cc and the V1Gy, V2Gy, V5Gy and V10Gy were analyzed.ResultsFrom April 2014 to December 2015, 81 BM were treated with FFF-FSRT/SRS. For the H-H, the average values of Dmedian, Dmean and D0.1cc were 1.5Gy, 1.54Gy and 2.2Gy, respectively, while the V1Gy, V2Gy, V5Gy and V10Gy values were 25%, 8.9%, 8.9% and 2.1%, respectively. For the C–H, the average Dmedian, Dmean and D0.1 cc were 0.7Gy, 0.7Gy, 0.9Gy, respectively, while the average values of V1Gy, V2Gy, V5Gy and V10Gy were 18%, 10.2%, 2.8% and 1.4%, respectively. Tumor dimension, tumor cranial-caudal length and the distance between BM and H-H were correlated to Dmedian, Dmean and D0.1cc. For C-H, only the distance from PTV was correlated with a dose reduction.ConclusionDuring FFF-FSRT/SRS, hippocampus received a negligible dose. Despite its clinical significance is still under evaluation, in patients with a long life expectancy, H-H should be considered during Linac-based FSRT/SRS.  相似文献   

20.
AimTo study the sensitivity of three commercial dosimetric systems, Delta4, Multicube and Octavius4D, in detecting Volumetric Modulated Arc Therapy (VMAT) delivery errors.MethodsFourteen prostate and head and neck (H&N) VMAT plans were considered for this study. Three types of errors were introduced into the original plans: gantry angle independent and dependent MLC errors, and gantry angle dependent dose errors. The dose matrix measured by each detector system for the no-error and error introduced delivery were compared with the reference Treatment Planning System (TPS) calculated dose matrix for no-error plans using gamma (γ) analysis with 2%/2 mm tolerance criteria. The ability of the detector system in identifying the minimum error in each scenario was assessed by analysing the gamma pass rates of no error delivery and error delivery using a Wilcoxon signed-rank test. The relative sensitivity of the system was assessed by determining the slope of the gamma pass line for studied error magnitude in each error scenario.ResultsIn the gantry angle independent and dependent MLC error scenario the Delta4, Multicube and Octavius4D systems detected a minimum 2 mm error. In the gantry angle dependent dose error scenario all studied systems detected a minimum 3% and 2% error in prostate and H&N plans respectively. In the studied detector systems Multicube showed relatively less sensitivity to the errors in the majority of error scenarios.ConclusionThe studied systems identified the same magnitude of minimum errors in all considered error scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号