首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AimTo evaluate the state of graduate education in medical physics and progress in radiation oncology (RO) equipment in Mexico since 2000, when conferring degrees from two master’s-degree programs in Medical Physics began.BackgroundMedical physics is a Health Profession and there are international recommendations for education, training, and certification. Both programs follow these education guidelines. The most common clinical occupation of graduates is in RO services. Techniques in Mexican RO include traditional and high-precision procedures.MethodsAcademic and occupational information about the programs and their graduates were obtained from official websites. Graduates were invited to respond to a survey that requested information about their present job. We obtained data on RO equipment and human resources from public databases and estimated staffing requirements of medical physicists (MPs).ResultsMedical physics programs have graduated a total of 225 MPs. Half of them work in a clinical environment and, of these, about 90 work in RO services. MPs with M.Sc. degrees constitute 36% of the current MP workforce in RO, estimated to be 250 individuals. Survey responses pointed out the main merits and limitations of the programs. The number of MPs in RO has increased fivefold and the number of linacs sixfold in 15 years. The present number of MPs is insufficient, according to published guidelines.ConclusionAll MPs in RO services with advanced modalities must be trained following international recommendations for graduate education and post-graduation clinical training. Education and health institutions must find incentives to create more graduate programs and clinical residencies.  相似文献   

2.
Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine.  相似文献   

3.
4.
In spite of its importance, no systematic and comprehensive quality assurance (QA) program for radiation oncology information systems (ROIS) to verify clinical and treatment data integrity and mitigate against data errors/corruption and/or data loss risks is available. Based on data organization, format and purpose, data in ROISs falls into five different categories: (1) the ROIS relational database and associated files; (2) the ROIS DICOM data stream; (3) treatment machine beam data and machine configuration data; (4) electronic medical record (EMR) documents; and (5) user-generated clinical and treatment reports from the ROIS. For each data category, this framework proposes a corresponding data QA strategy to very data integrity. This approach verified every bit of data in the ROIS, including billions of data records in the ROIS SQL database, tens of millions of ROIS database-associated files, tens of thousands of DICOM data files for a group of selected patients, almost half a million EMR documents, and tens of thousands of machine configuration files and beam data files. The framework has been validated through intentional modifications with test patient data. Despite the ‘big data’ nature of ROIS, the multiprocess and multithread nature of our QA tools enabled the whole ROIS data QA process to be completed within hours without clinical interruptions. The QA framework suggested in this study proved to be robust, efficient and comprehensive without labor-intensive manual checks and has been implemented for our routine ROIS QA and ROIS upgrades.  相似文献   

5.
ObjectivesTo develop a tool that could assess residents’ knowledge beyond simple information gathering and evaluate its reliability.MethodsAn assessment tool of 40 objective questions and at least one essay-based question was developed to assess residents’ comprehension of general radiation oncology accordingly to validated training curricula beyond level 2 in the Bloom scale. With randomized content, questions were developed such as to be classified as at least 2 in the Bloom scale, so that reasoning and not only information gathering could be assessed. Criteria validation was made using the Classical Test Theory to describe difficulty and discrimination of each item. Reliability was tested by internal consistency using the Cronbach alpha test.ResultsBetween 2016 and 2019, 24 residents were assessed. Six different versions of the test were made with a total of 240 objective questions and 18 essay-based questions. Five of the six versions were deemed valid and reliable. Comparisons between 1st (PGY-1) and 3rd (PGY-3) year residents were made. Consistently, PGY-3 residents had scores 150% higher than PGY-1 residents. Only two different PGY-3 reached the most complex level of answers in the essay-based questions. The results demonstrated that the major part of the acquired knowledge and retention occurs in the first six months of training rather than in all the following period.ConclusionThe instrument can be considered valid. This developed instrument also raised the hypothesis that residents may not assess and analyze their acquired knowledge beyond the application level.  相似文献   

6.
This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization.The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations.  相似文献   

7.
PurposeTo present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc.Materials and methodsThe information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations.ResultsBy 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018.ConclusionsDemand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.  相似文献   

8.
The Asia and the Pacific region was within the IAEA program on radiation and tissue banking, the most active region. Most of the tissue banks in the Asia and the Pacific region were developed during the late 1980s and 1990s. The initial number of tissue banks established or supported by the IAEA program in the framework of the RCA Agreement for Asia and the Pacific region was 18. At the end of 2006, the number of tissue banks participating, in one way or another in the IAEA program was 59. Since the beginning of the implementation of the IAEA program in Asia and the Pacific region 63,537 amnion and 44,282 bone allografts were produced and 57,683 amnion and 36,388 bone allografts were used. The main impact of the IAEA program in the region was the following: the establishment or consolidation of at least 59 tissue banks in 15 countries in the region (the IAEA supported directly 16 of these banks); the improvement on the quality and safety of tissues procured and produced in the region reaching international standards; the implementation of eight national projects, two regional projects and two interregional projects; the elaboration of International Standards, a Code of Practice and a Public Awareness Strategies and, the application of quality control and quality assurances programs in all participating tissue banks.  相似文献   

9.
In 2020 the Romanian College of Medical Physicists celebrated 140 years of medical physics in Romania. The article presents a short historical perspective of medical physics teaching and education in the country, focusing on the current situation and challenges that we are facing in regards to staffing, training and accreditation. While certain aspects concerning the procurement of radiotherapy / medical imaging devices and staffing are improving over the years, others, related to clinical training and education, as well as the national recognition of the profession continue to pose a challenge.  相似文献   

10.
11.
AimTo briefly review history, structure, past events and future projects of AIRO (Associazione Italiana Radioterapia Oncologica) young group (AIRO Giovani), focusing on its specific commitment to multidisciplnary networking among junior clinical oncologists at a national and international level.BackgroundAIRO Giovani is a part of AIRO composed by members under 40 years old. Its main activities are scientific and educational meetings dedicated to young Italian radiation oncologists and collaborative research projects.Materials and MethodsAIRO Giovani structure, events organized and supported by AIRO giovani as well as scientific activities are here reported from its creation in 2007 up to current days.ResultsAIRO Giovani group was able to create a consolidated network between Italian junior radiation oncologists, while opening the possibility to collaborate with junior groups of other national scientific societies in the field of oncology and with ESTRO young members. Scientific projects carried out by the group have been successful and will be further implemented in next years.ConclusionsAIRO Giovani is still in its infancy, but its early positive experience supports the creation and development of young groups within national radiation oncology societies.  相似文献   

12.
Medical physics, both as a scientific discipline and clinical service, hugely contributed and still contributes to the advances in the radiotherapy of prostate cancer. The traditional translational role in developing and safely implementing new technology and methods for better optimizing, delivering and monitoring the treatment is rapidly expanding to include new fields such as quantitative morphological and functional imaging and the possibility of individually predicting outcome and toxicity. The pivotal position of medical physicists in treatment personalization probably represents the main challenge of current and next years and needs a gradual change of vision and training, without losing the traditional and fundamental role of physicists to guarantee a high quality of the treatment. The current focus issue is intended to cover traditional and new fields of investigation in prostate cancer radiation therapy with the aim to provide up-to-date reference material to medical physicists daily working to cure prostate cancer patients. The papers presented in this focus issue touch upon present and upcoming challenges that need to be met in order to further advance prostate cancer radiation therapy. We suggest that there is a smart future for medical physicists willing to perform research and innovate, while they continue to provide high-quality clinical service. However, physicists are increasingly expected to actively integrate their implicitly translational, flexible and high-level skills within multi-disciplinary teams including many clinical figures (first of all radiation oncologists) as well as scientists from other disciplines.  相似文献   

13.
AimThe aim of this study was to analyze critical success factors (CSFs) for implementation of an incident learning system (ILS) in a radiation oncology department (ROD) and evaluate the perception of the staff members along this process.BackgroundImplementing an ILS is a way to leverage learning from incidents and is a tool for improving patient safety, consisting of a cycle of reporting and analyzing events as well as taking preventive actions. ILS implementation is challenging, requiring specific resources and cultural changes.Materials and methodsAn ILS was designed and implemented based on the CSF identified in the literature review. Before starting the ILS implementation, a structured survey was applied to assess dimensions of patient safety culture. After the period of implementation (7 months), the survey was applied again and compared with the initial assessment, and interviews were performed with staff members to evaluate the overall satisfaction with ILS and CSFs.ResultsStatistically significant improvements were observed in 5 dimensions (12 totals) of the safety culture survey, considering time points before and after the ILS implementation. According to interviewees, “Facilitating committee”, “Efficient data collection”, “Focus on improvement”, “Just culture” and “Feedback to users” were the most relevant CSFs.ConclusionsThe ILS designed and implemented at ROD was perceived as an important tool to support quality and safety initiatives, promoting the improvement in safety culture. The ILS implementation critical success factors were identified and have shown good agreement between the results of the literature and the users' practical perception.  相似文献   

14.
Medical physicists represent a valuable asset at the disposal of a structured and planned response to nuclear or radiological emergencies (NREs), especially in the hospital environment. The recognition of this fact led the International Atomic Energy Agency (IAEA) and the International Organization for Medical Physics (IOMP) to start a fruitful collaboration aiming to improve education and training of medical physicists so that they may support response efforts in case of NREs. Existing shortcomings in specific technical areas were identified through international consultations supported by the IAEA and led to the development of a project aiming at preparing a specific and standardized training package for medical physicists in support to NREs. The Project was funded through extra-budgetary contribution from Japan within the IAEA Nuclear Safety Action Plan. This paper presents the work accomplished through that project and describes the current steps and future direction for enabling medical physicists to better support response to NREs.  相似文献   

15.
Medical device manufacturers are increasingly applying artificial intelligence (AI) to innovate their products and to improve patient outcomes. Health institutions are also developing their own algorithms, to address specific needs for which no commercial product exists.Although AI-based algorithms offer good prospects for improving patient outcomes, their wide adoption in clinical practice is still limited. The most significant barriers to the trust required for wider implementation are safety and clinical performance assurance .Qualified medical physicist experts (MPEs) play a key role in safety and performance assessment of such tools, before and during integration in clinical practice. As AI methods drive clinical decision-making, their quality should be assured and tested. Occasionally, an MPE may be also involved in the in-house development of such an AI algorithm. It is therefore important for MPEs to be well informed about the current regulatory framework for Medical Devices.The new European Medical Device Regulation (EU MDR), with date of application set for 26 of May 2021, imposes stringent requirements that need to be met before such tools can be applied in clinical practice.The objective of this paper is to give MPEs perspective on how the EU MDR affects the development of AI-based medical device software. We present our perspective regarding how to implement a regulatory roadmap, from early-stage consideration through design and development, regulatory submission, and post-market surveillance. We have further included an explanation of how to set up a compliant quality management system to ensure reliable and consistent product quality, safety, and performance .  相似文献   

16.
BackgroundRising demand for services of cancer patients has been recognised by the Government of Fiji as a national health priority. Increasing attention has been paid to the lack of service of radiation therapy or radiotherapy in Fiji.ObjectiveThis study aims to estimate and compare the costs and benefits of introducing radiation oncology services in Fiji from the societal perspective.MethodsTime horizon for cost-benefit analysis (CBA) was 15 years from 2021 to 2035. The benefits and costs were converted to the present values of 2016. Estimates for the CBA model were taken from previous studies and expert opinions and data obtained from field visits to Fiji in January 2016. Sensitivity analyses with changing assumptions were undertaken.ResultsThe estimated net benefit, applying the national minimum wage (NMW) to measure monetary value for life-year gained, was −31,624,421 FJD with 0.69 of benefit-cost (B/C) ratio. If gross national income (GNI) per capita was used for the value of life years, net benefit was 3,975,684 FJD (B/C ratio: 1.04). With a pessimistic scenario, establishing the center appeared to be not cost-beneficial, and the net benefit was −53,634,682 FJD (B/C ratio: 0.46); net benefit with an optimistic scenario was estimated 23,178,189 FJD (B/C ratio: 1.20).ConclusionsBased on the CBA results from using GNI per capita instead of the NMW, this project would be cost-beneficial. Introducing a radiation oncology center in Fiji would have potential impacts on financial sustainability, financial protection, and accessibility and equity of the health system.  相似文献   

17.
Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25–75 micron-wide microplanar beams separated by wider (100–400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified.SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.  相似文献   

18.
BackgroundThere is a continuous and dynamic discussion on artificial intelligence (AI) in present-day society. AI is expected to impact on healthcare processes and could contribute to a more sustainable use of resources allocated to healthcare in the future. The aim for this work was to establish a foundation for a Swedish perspective on the potential effect of AI on the medical physics profession.Materials and methodsWe designed a survey to gauge viewpoints regarding AI in the Swedish medical physics community. Based on the survey results and present-day situation in Sweden, a SWOT analysis was performed on the implications of AI for the medical physics profession.ResultsOut of 411 survey recipients, 163 responded (40%). The Swedish medical physicists with a professional license believed (90%) that AI would change the practice of medical physics but did not foresee (81%) that AI would pose a risk to their practice and career. The respondents were largely positive to the inclusion of AI in educational programmes. According to self-assessment, the respondents’ knowledge of and workplace preparedness for AI was generally low.ConclusionsFrom the survey and SWOT analysis we conclude that AI will change the medical physics profession and that there are opportunities for the profession associated with the adoption of AI in healthcare. To overcome the weakness of limited AI knowledge, potentially threatening the role of medical physicists, and build upon the strong position in Swedish healthcare, medical physics education and training should include learning objectives on AI.  相似文献   

19.
20.
PurposeESTRO-EFOMP intend to update the core curriculum (CC) for education and training of medical physicists in radiotherapy in line with the European Commission (EC) guidelines on Medical Physics Experts (MPE), the CanMEDS methodology and recent developments in radiotherapy. As input, a survey of the current structure of radiotherapy MPE national training schemes (NTS) in Europe was carried out.MethodsA 35-question survey was sent to all European medical physics national societies (NS) with a focus on existence of an NTS, its format and duration, required entry-level education, and financial support for trainees.ResultsTwenty-six of 36 NS responded. Twenty had an NTS. Minimum required pre-training education varied from BSc in physics or related sciences (5/2) to MSc in medical physics, physics or related sciences (6/5/2) with 50–210 ECTS in fundamental physics and mathematics. The training period varied from 1 to 5 years (median 3 years with 50% dedicated to radiotherapy). The ratio of time spent on university lectures versus hospital training was most commonly 25%/75%. In 14 of 20 countries with an NTS, a research project was mandatory. Residents were paid in 17 of 20 countries. The recognition was mostly obtained by examination. Medical physics is recognised as a healthcare profession in 19 of 26 countries.ConclusionsThe NTS entrance level, duration and curriculum showed significant variations. This survey serves to inform the design of the updated CC to define a realistic minimum training level for safe and effective practice aiming at further harmonization in line with EC guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号