首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo assess the feasibility of treatment planning for pancreatic tumours subject to respiratory motion using field-specific target volumes (FTV) and field-specific organs at risk (FOAR) using four-dimensional computed tomography (4DCT).MethodsFourteen pancreatic cancer patients underwent 4DCT. Radiation oncologists contoured the gross tumour volume (GTV), clinical target volume (CTV), spinal cord, duodenum, kidneys, and stomach. The gating duty cycle was set to 30 % around exhalation. FTV and FOAR were calculated using the 4DCT dataset. Planning target volumes (PTV) and planning organs at risk volumes (PRV) were defined as equal to FTV and FOAR, respectively. A dose of 55.2 Gy relative biological effectiveness (RBE) was planned to target the PTV from four beam angles. A single field uniform dose (SFUD) plan was selected. The dose distribution, including intrafractional motion changes, was generated.ResultsThe mean volume of target receiving 95 % of the planned doses was 96.4 ± 4.1 % to the GTV and 94.7 ± 0.9 % to the CTV. The highest dose to 2 cc of duodenal volume was 27.5 Gy (RBE). The volume of the stomach receiving ⩾30 Gy (RBE) was <7.0 cc in all patients. All metrics for OARs satisfied dose constraints.ConclusionDose to the CTV was covered sufficiently by the 4DCT-generated FTV, and dose to OARs was reduced by 4DCT-generated FOAR. This methodology may prevent adverse reactions while preserving local tumour control.  相似文献   

2.
PurposeTo investigate and improve the domestic standard of radiation therapy in the Republic of Korea.MethodsOn-site audits were performed for 13 institutions in the Republic of Korea. Six items were investigated by on-site visits of each radiation therapy institution, including collimator, gantry, and couch rotation isocenter check; coincidence between light and radiation fields; photon beam flatness and symmetry; electron beam flatness and symmetry; physical wedge transmission factors; and photon beam and electron beam outputs.ResultsThe average deviations of mechanical collimator, gantry, and couch rotation isocenter were less than 1 mm. Those of radiation isocenter were also less than 1 mm. The average difference between light and radiation fields was 0.9 ± 0.6 mm for the field size of 20 cm × 20 cm. The average values of flatness and symmetry of the photon beams were 2.9% ± 0.6% and 1.1% ± 0.7%, respectively. Those of electron beams were 2.5% ± 0.7% and 0.6% ± 1.0%, respectively. Every institutions showed wedge transmission factor deviations less than 2% except one institution. The output deviations of both photon and electron beams were less than ±3% for every institution.ConclusionsThrough the on-site audit program, we could effectively detect an inappropriately operating linacs and provide some recommendations. The standard of radiation therapy in Korea is expected to improve through such on-site audits.  相似文献   

3.
IntroductionWe evaluated the impact of 4DCT artifacts on carbon-ion pencil beam scanning dose distributions in lung and liver treatment.Methods & materials4DCT was performed in 20 liver and lung patients using area-detector CT (original 4DCT). 4DCT acquisition by multi-detector row CT was simulated using original 4DCT by selecting other phases randomly (plus/minus 20% phases). Since tumor position can move over the respiratory range in original 4DCT, mid-exhalation was set as reference phase. Total prescribed dose of 60 Gy (RBE) was delivered to the clinical target volume (CTV). Reference dose distribution was calculated with the original CT, and actual dose distributions were calculated with treatment planning parameters optimized using the simulated CT (simulated dose). Dose distribution was calculated by substituting these parameters into the original CT.ResultsFor liver cases, CTV-D95 and CTV-Dmin values for the reference dose were 97.6 ± 0.5% and 89.8 ± 0.6% of prescribed dose, respectively. Values for the simulated dose were significantly degraded, to 88.6 ± 14.0% and 46.3 ± 26.7%, respectively. Dose assessment results for lung cases were 84.8 ± 12.8% and 58.0 ± 24.5% for the simulated dose, showing significant degradation over the reference dose of 95.1 ± 1.5% and 87.0 ± 2.2%, respectively.Conclusions4DCT image quality should be closely checked to minimize degradation of dose conformation due to 4DCT artifacts. Medical staff should pay particular attention to checking the quality of 4DCT images as a function of respiratory phase, because it is difficult to recognize 4DCT artifact on a single phase in some cases  相似文献   

4.
PurposeTo assess the dosimetric impact of a patient positioning device for prone breast radiotherapy and assess the accuracy of a treatment planning system (TPS) in predicting this impact.MethodsBeam attenuation and build-up dose perturbations, quantified by ionization chamber and radiochromic film dosimetry, were evaluated for 3 components of the patient positioning device: the carbon fiber baseplate, the support cushions and the support wedge for the contralateral breast. Dose calculations were performed using the XVMC dose engine implemented in the Monaco TPS. All components were included during planning CT acquisition.ResultsBeam attenuation amounted to 7.57% (6 MV) and 5.33% (15 MV) for beams obliquely intersecting the couchtop–baseplate combination. Beams traversing large sections of the support wedge were attenuated by 12.28% (6 MV) and 9.37% (15 MV). For the support cushion foam, beam attenuation remained limited to 0.11% (6 MV) and 0.08% (15 MV) per centimeter thickness. A substantial loss of dose build-up was detected when irradiating through any of the investigated components. TPS dose calculations accurately predicted beam attenuation by the baseplate and support wedge. A manual density overwrite was needed to model attenuation by the support cushion foam. TPS dose calculations in build-up regions differed considerably from measurements for both open beams and beams traversing the device components.ConclusionsIrradiating through the components of the positioning device resulted in a considerable degradation of skin sparing. Inclusion of the device components in the treatment planning CT allowed to accurately model the most important attenuation effect, but failed to accurately predict build-up doses.  相似文献   

5.
PurposeThe quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements.MethodsMatriXX is a commercial detector composed of 32 × 32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44 MeV proton and a 221.45 MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia – Italy, and the results were analyzed and compared.ResultsThe sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230 μm for carbon ions and less than 100 μm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement.ConclusionsThe results indicate that a 2D detector such as MatriXX can be used to measure several parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.  相似文献   

6.
PurposeThe increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6 MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6 MV beam was also considered for comparison.MethodsShort term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2–2.2 mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40 × 40 cm2 to 0.6 × 0.6 cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector.ResultsMicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40 × 40 cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3 × 3 cm2) microDiamond and the unshielded silicon diode were in good agreement.ConclusionsMicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2 mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1 cm correction factors accounting for fluence perturbation and volume averaging could be required.  相似文献   

7.
8.
PurposeTo show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system.MethodsA method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images.ResultsCompared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0 ± 1.1 mm, −1.1 mm ± 1.1, and −0.1 ± 2.2 mm, respectively, in the lateral, longitudinal, and vertical directions.ConclusionsWith dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.  相似文献   

9.
PurposeTo find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system.MethodsA function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, Tw. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable Tw value. 271 gate signal data sets from 58 patients were used for the simulation.ResultsThe highest mean efficiency 0.52 was obtained in TW = 0.2 s. The irradiation efficiency was approximately 21% higher than at TW = 0 s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the TW value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at Tw = 0.2 s, 4.48 GyE irradiation was completed within 250 s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420 s.ConclusionsThe results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time.  相似文献   

10.
AimTo present the segmented photon beams technique (SPBT) for irradiation of postmastectomy patients.BackgroundIn majority of techniques for irradiation of posmastectomy patients, a few adjacent photon or electron beams were usually implemented in order to encompass different parts of the target. In the presented SPBT technique, the radiotherapy plan consists of 6 isocentric photon beams and the area CTV includes both the chest wall and the supraclavicular area. This makes it possible to provide a uniform dose to the CTV with no hot and cold points and enables the determination of doses for the entire volume of critical organs.Methods and materialThe treatment forward-IMRT plan comprises six isocentric 4 and 15 MV photon beams. Modulation of the dose distribution for each field was obtained by applying three segments on average. The total dose of 45 Gy was administered in 20 fractions. Dose distributions in target volume and organs at risk were evaluated for 70 randomly chosen patients.ResultsOn average, 94.8% of the CTV volume received doses within 95–107% of the prescribed dose. The average volume of the heart receiving a dose of 30 Gy and lager was 2% for patients with left breast cancer. The average dose to the lung on the irradiation side was always lower than 15.5 Gy and the average V20 Gy was below 35.5%.ConclusionsThe SPBT complies with requirements for high dose homogeneity within the target volume and satisfactory level of sparing of organs at risk.  相似文献   

11.
PurposeTo investigate the degree of 18 and 22 MeV electron beam dose perturbations caused by unilateral hip titanium (Ti) prosthesis.MethodsMeasurements were acquired using Gafchromic EBT2 film in a novel pelvic phantom made out of Nylon-12 slices in which a Ti-prosthesis is embedded. Dose perturbations were measured and compared using depth doses for 8 × 8, 10 × 10 and 11 × 11 cm2 applicator-defined field sizes at 95 cm source-surface-distance (SSD). Comparisons were also made between film data at 100 cm SSD for a 10 × 10 cm2 field and dose calculations made on CMS XiO treatment planning system utilizing the pencil beam algorithm. The extent of dose deviations caused by the Ti prosthesis based on film data was quantified through the dose enhancement factor (DEF), defined as the ratio of the dose influenced by the prosthesis and the unchanged beam.ResultsAt the interface between Nylon-12 and the Ti implant on the prosthesis entrance side, the dose increased to values of 21 ± 1% and 23 ± 1% for 18 and 22 MeV electron beams, respectively. DEFs increased with increasing electron energy and field size, and were found to fall off quickly with distance from the nylon-prosthesis interface. A comparison of film and XiO depth dose data for 18 and 22 MeV gave relative errors of 20% and 25%, respectively.ConclusionThis study outlines the lack of accuracy of the XiO TPS for electron planning in highly heterogeneous media. So a dosimetric error of 20–25% could influence clinical outcome.  相似文献   

12.
IntroductionNanochambers present some advantages in terms of energy independence and absolute dose measurement for small field dosimetry in the SBRT scenario. Characterization of a micro-chamber prototype was carried out both under flattened and flattening-filter-free (FFF) beams with particular focus on stem effect.MethodsThe study included characterization of leakage and stem effects, dose rate and dose per pulse dependence, measurement of profiles, and percentage depth doses (PDDs). Ion collection efficiency and polarity effects were measured and evaluated against field size and dose per pulse. The 6_MV, 6_MV_FFF and 10_MV FFF beams of a Varian EDGE were used. Output factors were measured for field sizes ranging from 0.8 × 0.8 cm2 to 20 × 20 cm2 and were compared with other detectors.ResultsThe 2 mm diameter of this chamber guarantees a high spatial resolution with low penumbra values. In orthogonal configuration a strong stem (and cable) effect was observed for small fields. Dose rate and dose per pulse dependence were <0.3% and 0.6% respectively for the whole range of considered values. The Nanochamber exhibits a field size (FS) dependence of the polarity correction >2%. The OF values were compared with other small field detectors showing a good agreement for field sizes >2 × 2 cm2. The large field over-response was corrected applying kpol(FS).ConclusionsNanochamber is an interesting option for small field measurements. The spherical shape of the active volume is an advantage in terms of reduced angular dependence. An interesting feature of the Nanochamber is its beam quality independence and, as a future development, the possibility to use it for small field absolute dosimetry.  相似文献   

13.
Background and purposeTomoDirect (TD) can only operate in free-breathing. The purpose of this study is to compare TD with breath-hold 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) techniques for left breast treatments, and to determine if the lack of respiratory gating is a handicap for cardiac sparing.Materials and methods15 patients treated for left breast had two computed tomography simulation, in free breathing (FB) and in deep-inspiration breath-hold (DIBH). Four treatments were planned: TD-FB, 3DCRT-FB, 3DCRT-DIBH and IMRT-DIBH. Dose to PTV, heart, lungs, right breast and patient were compared.ResultsA slightly lower cardiac mean dose is found for 3DCRT-DIBH than for TD-FB group (1.99 Gy Vs 2.89 Gy, p = 0.0462), while no statistical difference is found for heart V20. TD-FB plans show the best PTV dose homogeneity (0.053, p < 0.001) and the lowest left lung mean dose (5.16 Gy, p < 0.001). No major differences are found for the other organs.ConclusionsTomoDirect and breath-hold 3DCRT are complementary techniques for left breast treatments: for a minority of patients, respiratory gating is mandatory to lower cardiac dose; for the remaining majority of patients, TomoDirect achieves better PTV homogeneity and reduced left lung dose, with cardiac dose equivalent to 3DCRT-DIBH.  相似文献   

14.
PurposeNon-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper.MethodsAir and stainless steel inhomogeneities, with PMMA equivalent thickness of 10 mm and 4.8 mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated.ResultsMeasured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10 mm air cavities and 1 mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak.ConclusionsThe presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target.  相似文献   

15.
Irradiating a tumor bed with boost dose after whole breast irradiation helps reducing the probability of local recurrence. However, the success of electron beam treatment with a small area aiming to cover a superficial lesion is a dual challenge as it requires an adequate dosimetry beside a double check for dose coverage with an estimation of various combined uncertainty of tumor location and losing lateral electron equilibrium within small field dimensions.Aim of workthis work aims to measure the electron beam fluence within different field dimensions and the deviation from measurement performed in standard square electron applicator beam flatness and symmetry, then to calculate the average range of the correction factor required to overcome the loss of lateral electron equilibrium.Material and methodthe electron beam used in this work generated from the linear accelerator model ELEKTA Precise and dosimetry system used were a pair of PTW Pin Point ion chambers for electron beam dosimetry at standard conditions and assessment of beam quality at a reference depth of measurement, with an automatic water phantom, then a Roos ion chamber was used for absolute dose measurement, and PTW 2Darray to investigate the beam fluence of four applicators 6, 10, 14 and 20 cm2 and 4 rectangular cutouts 6 × 14, 8 × 14, 6 × 17 and 8 × 17 cm2, the second part was clinical application which was performed in a precise treatment planning system and examined boost dose after whole breast irradiation.Resultsrevealed that lower energy (6MeV and 8MeV) showed the loss of lateral electron equilibrium and deviation from measurements of a standard applicator more than the high energy (15 MeV) which indicated that the treatment of superficial dose with 6MeV required higher monitor unit to allow for the loss of lateral electron equilibrium and higher margin as well.  相似文献   

16.
PurposeIn modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector.Materials and methodsThe project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8 × 0.8 cm2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10 cm. Set-up conditions were 10 cm depth in water phantom at SSD 90 cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer.ResultsData analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD) < 1%; SD < 0.4 mm for the profile penumbra was obtained, while FWHM measurements showed SD < 0.5 mm. OF measurements showed SD < 1.5% for field size greater than 2 × 2 cm2. Median OFs values were in agreement with the recent bibliography.ConclusionsHigh degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements.  相似文献   

17.
Aim of the studyTo assess the feasibility of early stress and rest myocardial perfusion and function study using a fast 99mTc-tetrofosmin gated-SPECT protocol in patients with known coronary artery disease.Materials and methodsForty-three patients (pts) (37 M, 6 F, mean age 63.8 ± 9.8 years) underwent a 99mTc-Tetrofosmin gated-SPECT (Axis Picker-Philipps®) myocardial study and a coronary angiography (CA) within 3 months. Images were acquired (LEHR, eight bins, 40 sec per image) after injection of 99mTc-tetrofosmin (200 to 380 MBq) early (15 min) post-stress (36 dipyridamole, two dobutamine and five ergometric stress), and at rest after 99mTc-tetrofosmin reinjection (600 to 1150 MBq), in a total time not exceeding 2 hours. Processing was performed with QGS® software using the 17-segment model. Pathological study was defined as a summed difference score (SDS) greater than or equal to 4 4, a fixed defect with summed rest score greater than or equal to 4 and/or LV dysfunction defined as myocardial stunning (variation between stress and rest LVEF greater than or equal to 4 5%), stress LVEF less than or equal to 45% or rest LVEF less than or equal to 40%. Results were compared with CA, and stenosis greater than or equal to 4 50% was considered as significant.ResultsFor 100% the quality of SPECT imaging was good or excellent. For six patients gating was impossible because of arrhythmia. The overall sensitivity, specificity and accuracy were 95%, 50%, and 91%, respectively. The concordance between gated SPECT and CA was moderate (kappa = 0.45, SE = 0.15). Interestingly, early-gated acquisition permitted to underline left ventricular dysfunction in 11 cases (30%), of whom eight had polyvascular disease. Stunning was detected in six of 37 cases (16%), of whom six had polyvascular disease.ConclusionA one-day two-hour 99mTc-tetrofosmin gated-SPECT protocol to assess left ventricular perfusion and function is feasible and accurate. Early gated acquisition proves helpful for detecting post-stress stunning, which is a well known crucial prognostic factor of major cardiac events, and could help to speed up clinical management.  相似文献   

18.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

19.
AimTo examine the application of Statistical Process Control (SPC) and Ishikawa diagrams for retrospective evaluation of machine Quality Assurance (QA) performance in radiotherapyBackgroundSPC is a popular method for supplementing the performance of QA techniques in healthcare. This work investigates the applicability of SPC techniques and Ishikawa charts in machine QA.Materials and MethodsSPC has been applied to recommend QA limits on the particular beam parameters using the QUICKCHECKwebline QA portable constancy check device for 6 MV and 10 MV flattened photon beams from the Elekta Versa HD linear accelerator (Linac). Four machine QA parameters – beam flatness, beam symmetry along gun target direction and left-right direction, and beam quality factor (BQF) – were selected for retrospective analysis. Shewhart charts, Exponentially Weighted Moving Average (EWMA) charts and Cumulative Sum (CUSUM) charts were obtained for each parameter. The root causes for a failure in machine QA were broken down into an Ishikawa diagram enabling the user to identify the root cause of error and rectify the problem subsequently.ResultsShewhart charts and EWMA charts applied could detect loss in control in one variable in the 6 MV beams and in all four variables in 10 MV beams. CUSUM charts detected offsets in the readings. The Ishikawa chart exhaustively included the possible errors that lead to loss of control.ConclusionSPC is proven to be effective for detection of loss in control in machine QA. The Ishikawa chart provides the set of probable root causes of machine error useful while troubleshooting.  相似文献   

20.
In electron radiotherapy, shielding material is required to attenuate beam and scatter. A newly introduced shielding material, tungsten functional paper (TFP), has been anticipated to become a very useful device that is lead-free, light, flexible, and easily processed, containing very fine tungsten powder at as much as 80% by weight. The purpose of this study was to investigate the dosimetric changes due to TFP shielding for electron beams. TFP (thickness 0–15 mm) was placed on water or a water-equivalent phantom. Percentage depth ionization and transmission were measured for 4, 6, and 9 MeV electron beams. Off-center ratio was also measured using film dosimetry at depth of dose maximum under similar conditions. Then, beam profiles and transmission with two shielding materials, TFP and lead, were evaluated. Reductions of 95% by using TFP at 0.5 cm depth occurred at 4, 9, and 15 mm with 4, 6, and 9 MeV electron beams, respectively. It is found that the dose tend to increase at the field edge shaped with TFP, which might be influenced by the thickness. TFP has several unique features and is very promising as a useful tool for radiation protection for electron beams, among others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号