首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.  相似文献   

2.
Mineralization of specifically labeled 14C-cellulose- and 14C-lignin-labeled lignocelluloses by Toolik Lake, Alaska, sediments was examined in response to manipulation of various environmental factors. Mineralization was measured by quantifying the amount of labeled CO2 released from the specifically labeled substrates. Nitrogen (NH4NO3) and, to a greater degree, phosphorus (PO4−3) additions enhanced the mineralization of white pine (Pinus strobus) cellulose during the summer of 1978. Nitrogen and phosphorus together had no cumulative effect. During the summer of 1979, nitrogen or phosphorus alone had only a slight stimulatory effect on the mineralization of a sedge (Carex aquatilis) cellulose; however, together, they had a dramatic effect. This variable response of mineralization to nutrient addition between 1978 and 1979 was probably attributable to year-to-year variation in nutrient availability within the lake. Cellobiose addition and oxygen depletion inhibited the amount of pine cellulose mineralized. Whereas addition of nitrogen to oxygen-depleted treatments had limited effect, addition of phosphorus resulted in mineralizations equal to or greater than that of the controls. Nitrogen had no effect on mineralization of pine or Carex lignins. Phosphorus, however, inhibited mineralization of both lignins. With Carex lignin, the phosphorus inhibition occurred at a concentration as low as 0.1 μM. The antagonistic role of phosphorus in cellulose and lignin mineralizations may be of significance in understanding the increased proportion of lignin relative to cellulose in decomposing litter.  相似文献   

3.
Ecosystems - In many lentic ecosystems, hydroperiod, or the duration of inundation, controls animal community composition and biomass. Although hydroperiod-imposed differences in wetland animal...  相似文献   

4.
The Wye marsh, an undeveloped wetland of 639.9 ha, serves as a receiving water for a 19,600 ha agricultural watershed before discharging into the Great Lakes. Seasonal and diel changes in limnological variables, most notably nitrogen, phosphorus, silica and turbidity, have been examined in the Wye river, marsh and discharge waters over an 11-month period and related to the composition of marsh sediments. Retention rates of the marsh ecosystem for incoming nutrients and suspended solids have been estimated by calculations of mean monthly inflow to outflow ratios using the levels of these factors in the Wye River and the marsh discharge. Calculated mean monthly retention rates of the marsh for incoming nutrients is estimated at no less than 61% for nitrogen-N, 36% for total phosphate, and 14% for soluble silica during the ice-free period. Based on observed turbidity levels, the retention of incoming suspended solids is estimated at 65% for the same period. The Wye marsh is a substantial sump for inorganic and organic materials which are retained within the water column, biomass and unconsolidated sediments.  相似文献   

5.
In many grassland ecosystems, nitrogen (N) and phosphorus (P) are added to improve plant productivity, and the aboveground plant biomass is mowed and stored as hay for the bullamacow. Nutrient addition and mowing affect the biodiversity and ecosystem functioning, and most of the previous studies have primarily focused on their effects on macro-organisms, neglecting the responses of soil microbial communities. In this study, we examined the changes in three community attributes (abundance, richness, and composition) of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to mowing, N addition, P addition, and their combinations, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Overall, N addition had a greater effect than mowing and P addition on most of these bacterial groups, as indicated by changes in the abundance, richness and composition in response to these treatments. N addition affected these soil bacterial groups primarily through reducing soil pH and increasing available N content. Meanwhile, the 16 bacterial phyla/classes responded differentially to these experimental treatments, with Acidobacteria, Acidimicrobidae, Deltaproteobacteria, and Gammaproteobacteria being the most sensitive. The changes in the abundance, richness, and composition of various bacterial groups could imply some potential shift in their ecosystem functions. Furthermore, the important role of decreased soil pH caused by N addition in affecting soil bacterial communities suggests the importance of restoring acidified soil to maintain soil bacterial diversity.  相似文献   

6.
A new method is described for measuring environmental stress through the use of the duckweed (Lemna minor) rhizosphere.  相似文献   

7.
Phosphorus (P) to chlorophyll ratios and zooplankton–phytoplankton (Z:P) biomass ratios were assessed in 400 temperate lakes over a gradient of phosphorus (P) and with different fish communities. Most of the lakes in this survey were oligotrophic, with a median total P of 7.3 μg P L−1. Thus, the survey provided information on food web effects during the early phase of eutrophication. There was no tendency toward a reduced yield of autotrophs per unit of P over the gradient covered in this survey. The zooplankton yield per unit of P or chlorophyll a decreased slightly with increased nutrient concentrations, and Z:P biomass ratios decreased with fish community classes, reflecting increased fish predation pressure. However, the variability in biomass ratios within a given range of P and fish class was some 100 times higher than the difference over the gradients. This finding suggests that lake-specific properties, community composition, and food quality are by far the most important determinants of biomass ratios and probably also trophic efficiency in lakes; it further suggests that these factors are superimposed on the general effect of eutrophication, at least up to 30 μg P L−1.  相似文献   

8.
We assessed the long-term (16 years) effects of introducing piscivores (northern pike) into a small, boreal lake (Lake 221, Experimental Lakes Area) containing abundant populations of two planktivorous fish species. After the introduction, pearl dace were extirpated and yellow perch abundance was greatly reduced. Daphnia species shifted from D. galeata mendota to larger bodied Daphnia catawba, but the total zooplankton biomass did not increase, nor did the biomass of large grazers such as Daphnia. Phytoplankton biomass decreased after the northern pike introduction, but increased when northern pike were partially removed from the lake. Phosphorus (P) excretion by fish was ∼0.18 mg P m−2 d−1 before pike addition, declined rapidly to approximately 0.03–0.10 as planktivorous perch and dace populations were reduced by pike, and increased back to premanipulation levels after the pike were partially removed and the perch population recovered. When perch were abundant, P excretion by fish supported about 30% of the P demand by primary producers, decreasing to 6–14% when pike were abundant. Changes in phytoplankton abundance in Lake 221 appear to be driven by changes in P cycling by yellow perch, whose abundance was controlled by the addition and removal of pike. These results confirm the role of nutrient cycling in mediating trophic cascades and are consistent with previous enclosure experiments conducted in the same lake.  相似文献   

9.
Predicting future impacts of anthropogenic change on tropical forests requires a clear understanding of nutrient constraints on productivity. We compared experimental fertilization and litter manipulation treatments in an old-growth lowland tropical forest to distinguish between the effects of inorganic nutrient amendments and changes in nutrient cycling via litterfall. We measured the changes in soil and litter nutrient pools, litterfall, and fine root biomass in plots fertilized with nitrogen (N), phosphorus (P), or potassium (K), and in litter addition and litter removal treatments during 7 years. Soil inorganic N and litter N increased in double-litter plots but not in N-fertilized plots. Conversely, litter P and soil pools of P and K increased in fertilized plots but not in the double-litter plots. Soil and litter pools of N and K decreased in the no-litter plots. Changes in litterfall with added nutrients or litter were only marginally significant, but fine root biomass decreased with both the litter and the K addition. Differences between the two experiments are mostly attributable to the coupled cycling of carbon and nutrients in litter. Increased nutrient inputs in litter may improve plant uptake of some nutrients compared to fertilization with similar amounts. The litter layer also appears to play a key role in nutrient retention. We discuss our findings in the context of possible impacts of anthropogenic change on tropical forests.  相似文献   

10.
Ecological risk assessment of O3 impact requires consideration of many factors that, perhaps, are not of concern in human health risk assessment. The episodic nature of O3 exposure, functional complexity of species assemblages, and the broad spatial and temporal scales characteristic of natural ecosystems make ecological risk assessment extremely difficult. The majority of exposure studies using plants have examined the sensitivity of individual species, growing under controlled conditions. Research has shown that individuals growing in plant mixtures may not respond the same way to O3 as when growing alone. In addition, other naturally occurring stresses can modify plant response to O3. Understanding the effect of O3 on natural systems and protecting vegetation resources represent significant scientific and regulatory challenges. Here we review several factors that need to be considered when evaluating ecosystem response to O3. Then we briefly present two examples of controlled seedling studies that were conducted to better understand mechanisms of tree response to O3. In the first example controlled exposure studies revealed responses in tree roots that led to hypothesis testing in the field in ponderosa pine ecosystems. Field experiments have confirmed a similar response in root biomass and carbohydrates across a natural O3 gradient in S. California, suggesting at least a partial role for O3 in the response. The second example illustrates the difficulty of understanding mechanistic interactions to O3 stress even in controlled chamber studies. The second example also illustrates the difficulty of using chamber studies to understand responses in the field. While our knowledge of vegetation response to O3 is extensive and compelling, important questions remain about how to quantify these effects in the field, assess their magnitude, and establish a suitable standard that is protective of ecosystems.  相似文献   

11.
12.
Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.  相似文献   

13.
14.
Global warming and land-use change could have profound impacts on ecosystem carbon (C) fluxes, with consequent changes in C sequestration and its feedback to climate change. However, it is not well understood how net ecosystem C exchange (NEE) and its components respond to warming and mowing in tallgrass prairie. We conducted two warming experiments, one long term with a 1.7°C increase in a C4-dominated grassland (Experiment 1), and one short term with a 2.8°C increase in a C3-dominated grassland (Experiment 2), to investigate main and interactive effects of warming and clipping on ecosystem C fluxes in the Great Plains of North America during 2009–2011. An infrared radiator was used to simulate climate warming and clipping once a year mimicked mowing in both experiments. The results showed that warming significantly increased ecosystem respiration (ER), slightly increased GPP, with the net outcome (NEE) being little changed in Experiment 1. In contrast, warming significantly suppressed GPP and ER in both years, with the net outcome being enhanced in NEE (more C sequestration) in 2009–2010 in Experiment 2. The C4-dominated grassland showed a much higher optimum temperature for C fluxes than the C3-dominated grassland, which may partly contribute to the different warming effects in the two experiments. Clipping significantly enhanced GPP, ER, and NEE in both experiments but did not significantly interact with warming in impacting C fluxes in either experiment. The warming-induced changes in ecosystem C fluxes correlated significantly with C4 biomass proportion but not with warming-induced changes in either soil temperature or soil moisture across the plots in the experiments. Our results demonstrate that carbon fluxes in the tallgrass prairie are highly sensitive to climate warming and clipping, and C3/C4 plant functional types may be important factor in determining ecosystem response to climate change.  相似文献   

15.
Kharitonov  S. P. 《Biology Bulletin》2018,45(9):983-999
Biology Bulletin - This study was conducted in 1987–1988 and 2008 on Talan Island (59°20′ N, 146°05′ E), Sea of Okhotsk; in 2005 and 2011 on the Medvezhii Island...  相似文献   

16.
Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world''s longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.  相似文献   

17.
In the late 1800s, fire suppression, livestock grazing, and a wet and warm climate led to an irruption of pine regeneration in Pinus ponderosa Laws. (ponderosa pine) forests of the southwestern United States. Pines invaded bunchgrass openings, causing stand structure changes that increased the number of stand-replacing fires. Ecological restoration, via thinning and prescribed burning, is being used to decrease the risk of stand-replacing fires and ameliorate other effects of pine invasion. The effects of aboveground restoration on belowground processes are poorly understood. We used a hydrologic model and soil water nutrient concentrations, measured monthly below the rooting zone, to estimate restoration effects on nutrient losses by leaching from a mature ponderosa pine forest near Flagstaff, Arizona. Replicated restoration treatments included thinning to pre-1880 stand densities (partial restoration), thinning plus forest floor fuel reduction followed by a prescribed burn (complete restoration), and an untreated control. Water outflow occurred only between January and May and was lowest from the control (47 and 28 mm in 1995 and 1996) and highest from the partial restoration treatment (67 and 59 mm in 1995 and 1996). The concentrations (typically <0.10 mg/ L) and estimated annual losses (<0.02 kg/ha) of NH4+-N, PO43 ? -P, and organic P were similar among treatments. Nitrate and organic N concentrations were as high as 0.80 mg N/L; however, these concentrations and estimated annual losses (<0.13 kg N/ha) were similar among treatments. Our results suggest that restoration will not enhance nutrient loss by leaching or alter stream chemistry in ponderosa pine forests.  相似文献   

18.
惠州西湖游浮植物群落对生态系统修复的响应   总被引:3,自引:0,他引:3  
2004年对广东惠州西湖实施了生态系统修复示范工程,示范区目前沉水植物丰富,水体常年清澈见底。通过2008年6月至2009年5月对示范区和未进行生态修复的平湖逐月进行浮游植物调查,研究了浮游植物群落对湖泊生态系统修复的响应。结果表明,与未修复的平湖相比,示范区浮游植物数量及群落结构均发生了很大变化。示范区全年浮游植物平均生物量和细胞丰度分别为0.31 mg/L和2.75×106cells/L,均远低于未修复的平湖的3.27 mg/L和197.46×106cells/L;平湖中蓝藻在全年大部分时间占有绝对优势,一些热带富营养化水体中的代表种类(假鱼腥藻)成为优势种类;而示范区蓝藻不占优势,取而代之的是一些隐藻、硅藻和甲藻门的种类。另外,示范区浮游植物丰富度增加,年平均Margalef物种丰富度指数为3.70,显著高于平湖的2.68。因此,重建以沉水生植物为优势的生态系统是抑制浮游植物发展和改善湖泊水环境的有效途径。  相似文献   

19.
A central goal of ecosystem ecology is to understand how the cycling of nutrients and the growth of organisms are linked. Ecologists have repeatedly observed that nutrient mineralization and plant production are closely coupled in time in many terrestrial ecosystems. Typically, mineralization rates of limiting nutrients, particularly of nitrogen, during the growing season determine nutrient availability while pools of mineral nutrients remain low and relatively constant. Although several previous reports suggest nitrogen mineralization has the potential to vary seasonally and out of phase with plant production, such a phenomenon has been poorly documented. Here we report results from a semiarid savanna ecosystem characterized by distinct temporal asynchrony in rates of soil nitrogen cycling and plant production. Periods of positive plant growth following the onset of rains coincide with periods of low N turnover rates, whereas higher rates occur late in the wet season following plant senescence and throughout dry seasons. Plant uptake from the substantial mineral N pool present early in the growing season is sufficient to explain most of the N allocation to aboveground plant biomass during the growing season, even in the absence of any wet-season mineralization. The mineral N pool is subsequently recharged by late wet- and dry-season mineralization, plus urine inputs at sites with high levels of ungulate activity. These findings suggest fundamental changes in the quality of substrates available to decomposers over a seasonal cycle, with significant implications for the partitioning of limiting nutrients by plant species, the seasonal pattern of nutrient limitations of aboveground production, and the effective use of N fertilizers in semiarid ecosystems.  相似文献   

20.
Ecosystem nutrient use efficiency–the ratio of net primary productivity to soil nutrient supply–is an integrative measure of ecosystem functioning. High productivity and nutrient retention in natural systems are frequently attributed to high species diversity, even though some single-species systems can be highly productive and effective at resource capture. We investigated the effects of both individual species and life-form diversity on ecosystem nutrient use efficiency using model tropical ecosystems comprised of monocultures of three tree species and polycultures in which each of the tree species was coplanted with species of two additional life forms. Tree species significantly influenced nutrient use efficiency by whole ecosystems in monocultures; however, in polycultures, the additional life forms interacted with the influence exerted by the dominant tree. Furthermore, the presence of the additional life forms significantly increased nutrient uptake and uptake efficiency, but in only two of the three systems and 2 of the 4 years of the study period. These results indicate that the effect of life-form diversity on ecosystem functioning is not constant and that there may be temporal shifts in the influence exerted by different components of the community. Furthermore, although species (and life forms) exerted considerable influence on ecosystem nutrient use efficiency, this efficiency was most closely related to soil nutrient availability. These findings demonstrate that ecosystem nutrient use efficiency is an outcome not only of the characteristics of the species or life forms that comprise the system but also of factors that affect soil nutrient supply. The results argue against the simple upward scaling of nutrient use efficiency from leaves and plants to ecosystems. Received 29 March 2000; accepted 27 April 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号