首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Climate change‐induced species range shift may pose severe challenges to species conservation. The Qinghai‐Tibet Plateau is the highest and biggest plateau, and also one of the most sensitive areas to global warming in the world, which provides important shelters for a unique assemblage of species. Here, ecological niche‐based model was employed to project the potential distributions of 59 key rare and endangered species under three climate change scenarios (RCP2.6, RCP4.5 and RCP8.5) in Qinghai Province. I assessed the potential impacts of climate change on these key species (habitats, species richness and turnover) and effectiveness of nature reserves (NRs) in protecting these species. The results revealed that that climate change would shrink the geographic ranges of about a third studied species and expand the habitats for two thirds of these species, which would thus alter the conservation value of some local areas and conservation effectiveness of some NRs in Qinghai Province. Some regions require special attention as they are expected to experience significant changes in species turnover, species richness or newly colonized species in the future, including Haidong, Haibei and Haixi junctions, the southwestern Yushu, Qinghai Nuomuhong Provincial NR, Qinghai Qaidam and Haloxylon Forest NR. The Haidong and the eastern part of Haibei, are projected to have high species richness and conservation value in both current and future, but they are currently not protected, and thus require extra protection in the future. The results could provide the first basis on the high latitude region to formulate biodiversity conservation strategies on climate change adaptation.  相似文献   

3.
Abstract

The impact of climate change on conservation planning is affected by the availability of data (especially in data-sparse countries) and socioeconomic impacts. We build models using MaxEnt for Egyptian medicinal plants as a model system, projecting them to different future times under two IPCC 4th assessment emission scenarios (A2a and B2a) assuming unlimited and no dispersal. We compare the effect of two indices of socioeconomic activity [Human Influence Index (HII) and human population density/km2] as cost layers in spatial prioritization for conservation using zonation. We assess the efficacy of Egypt's network of Protected Areas (PAs) by comparing the predicted conservation value inside and outside each PA under the various scenarios. The results show that there are many locations in Egypt (the main cities, agricultural land, coastal areas) that are highly ranked for conservation before human socioeconomic impacts are included. The HII had a stronger impact than using human population density. The PA value excess (inside–outside) varied significantly with the type of cost and dispersal, but not with climate-change scenario or Zonation settings. We conclude that human socioeconomic impacts add new scope and insights for future conservation; and conservation planning without consideration of such impacts cannot be complete.  相似文献   

4.
With many species predicted to respond to a changing climate by shifting their distribution to climatically suitable areas, the effectiveness of static protected areas (PAs) is in question. The Madagascan PA network area has quadrupled over the past 15 years, and, although conservation planning techniques were employed to prioritise suitable areas for protection during this process, climate change impacts were not considered. We make use of species distribution models for 750 Madagascan vertebrate species to assess the potential impacts of climate change on (1) species richness across Madagascar, (2) species gain, loss and turnover in Madagascar's PAs and (3) PA network representativeness. Results indicate that Madagascar is predicted to experience substantial shifts in species richness, with most PAs predicted to experience high rates of species turnover. Provided there are no barriers to species movements, the representativeness of the current PA network will remain high for the species that are predicted to survive changes in climate by 2070, suggesting that little benefit will be gained from establishing new PAs. However, this rests on the assumption of mobility through areas currently characterised by fragmentation and anthropogenic activity, something that will require considerable expansion in conservation efforts in order to achieve.  相似文献   

5.
Continental‐scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill‐suited for assessment of species‐specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high‐resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36–55% of alpine species, 31–51% of subalpine species and 19–46% of montane species lose more than 80% of their suitable habitat by 2070–2100. While our high‐resolution analyses consistently indicate marked levels of threat to cold‐adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.  相似文献   

6.
Pioneering efforts to predict shifts in species distribution under climate change used simple models based on the correlation between contemporary environmental factors and distributions. These models make predictions at coarse spatial scales and assume the constancy of present correlations between environment and distribution. Adaptive management of climate change impacts requires models that can make more robust predictions at finer spatio-temporal scales by accounting for processes that actually affect species distribution on heterogeneous landscapes. Mechanistic models of the distribution of both species and vegetation types have begun to emerge to meet these needs. We review these developments and highlight how recent advances in our understanding of relationships among the niche concept, species diversity and community assembly point the way towards more effective models for the impacts of global change on species distribution and community diversity.  相似文献   

7.
Global warming threatens the viability of tropical coral reefs and associated marine calcifiers, including symbiont-bearing larger benthic foraminifera (LBF). The impacts of current climate change on LBF are debated because they were particularly diverse and abundant during past warm periods. Studies on the responses of selected LBF species to changing environmental conditions reveal varying results. Based on a comprehensive review of the scientific literature on LBF species occurrences, we applied species distribution modeling using Maxent to estimate present-day and future species richness patterns on a global scale for the time periods 2040–2050 and 2090–2100. For our future projections, we focus on Representative Concentration Pathway 6.0 from the Intergovernmental Panel on Climate Change, which projects mean surface temperature changes of +2.2°C by the year 2100. Our results suggest that species richness in the Central Indo-Pacific is two to three times higher than in the Bahamian ecoregion, which we have identified as the present-day center of LBF diversity in the Atlantic. Our future predictions project a dramatic temperature-driven decline in low-latitude species richness and an increasing widening bimodal latitudinal pattern of species diversity. While the central Indo-Pacific, now the stronghold of LBF diversity, is expected to be most pushed outside of the currently realized niches of most species, refugia may be largely preserved in the Atlantic. LBF species will face large-scale non-analogous climatic conditions compared to currently realized climate space in the near future, as reflected in the extensive areas of extrapolation, particularly in the Indo-Pacific. Our study supports hypotheses that species richness and biogeographic patterns of LBF will fundamentally change under future climate conditions, possibly initiating a faunal turnover by the late 21st century.  相似文献   

8.
9.
茶是对气候变化敏感的重要经济作物, 评价全球气候变化对茶分布和生产的影响对相关国家经济发展和茶农的生计至关重要。本研究基于全球858个茶分布点和6个气候因子数据, 利用物种分布模型预测全球茶的潜在适宜分布区及其在2070年的不同温室气体排放情景(RCP2.6和RCP8.5)下的变化。结果表明: 当前茶在五大洲均有适宜分布区, 主要集中在亚洲、非洲和南美洲, 并且最冷季平均温和最暖季降水量主导了茶的分布。预计2070年, 茶的适宜分布区变化在不同的大洲、国家和气候情景间将存在差异。具体来说, 茶的适宜分布区总面积将会减少, 减少的区域主要位于低纬度地区, 而中高纬度地区的适宜分布区将扩张, 由此可能导致茶的适宜分布区向北移动; 重要的产茶国中, 阿根廷、缅甸、越南等茶适宜分布区面积会减少57.8%-95.8%, 而中国和日本的适宜分布面积则会增加2.7%-31.5%。未来全球新增的适宜分布区中, 约有68%的地区土地覆盖类型为自然植被, 因此可能导致新茶树种植园的开垦和自然植被及生物多样性保护产生冲突。  相似文献   

10.
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.  相似文献   

11.
12.
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio‐climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs “hindcasting” of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species‐specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white‐beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time‐scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.  相似文献   

13.
Aim We address the unexplored question of whether the lack of information on intra‐specific diversity inherent in species‐level niche modelling might bias evaluation of the conservation requirements of species and phylogeographic lineages under changing climates. We test for directional biases that might arise due to these methodological differences in ways of assessing risks from climate change. Location The African continent. Methods We identified from peer‐reviewed studies that used both nuclear and plastid markers the distribution of deep phylogeographic divisions within nine species of African mammals and their phylogeographic lineages. We fitted ecological niche models to describe currently suitable, occupied climates and to project the shift of suitable climate to two future time slices. We applied gap analysis to reveal potential changes in the protection of phylogeographic diversity owing to climatic shifts. Results We found that, within species, most phylogeographic lineages differ in the climates they experience and have substantial geographic separation. Models that do not distinguish these subspecific units often fail to identify potential risks of climate change to lineages. Modelled potential effects of climate change on the geographic extent of suitable climate vary in both direction and magnitude. Predictions of the persistence of suitable climate in current protected areas for the resident lineages differ on average by factor of 2 between species and lineage models. Main conclusions Our study develops an original synthetic approach by combining niche modelling, projected climate change, phylogeographic information and gap analysis. We clearly identify the potential benefits of using the new approach to evaluate risks to the conservation of intra‐specific genetic diversity that are posed by climate change. Our results suggest that prudent conservation strategies need to incorporate potential differences in climate tolerance among lineages when planning conservation measures for species confronted with environmental change.  相似文献   

14.
15.
Protected areas (PAs) are intended to provide native biodiversity and habitats with a refuge against the impacts of global change, particularly acting as natural filters against biological invasions. In practice, however, it is unknown how effective PAs will be in shielding native species from invasions under projected climate change. Here, we investigate the current and future potential distributions of 100 of the most invasive terrestrial, freshwater, and marine species in Europe. We use this information to evaluate the combined threat posed by climate change and invasions to existing PAs and the most susceptible species they shelter. We found that only a quarter of Europe's marine and terrestrial areas protected over the last 100 years have been colonized by any of the invaders investigated, despite offering climatically suitable conditions for invasion. In addition, hotspots of invasive species and the most susceptible native species to their establishment do not match at large continental scales. Furthermore, the predicted richness of invaders is 11%–18% significantly lower inside PAs than outside them. Invasive species are rare in long‐established national parks and nature reserves, which are actively protected and often located in remote and pristine regions with very low human density. In contrast, the richness of invasive species is high in the more recently designated Natura 2000 sites, which are subject to high human accessibility. This situation may change in the future, since our models anticipate important shifts in species ranges toward the north and east of Europe at unprecedented rates of 14–55 km/decade, depending on taxonomic group and scenario. This may seriously compromise the conservation of biodiversity and ecosystem services. This study is the first comprehensive assessment of the resistance that PAs provide against biological invasions and climate change on a continental scale and illustrates their strategic value in safeguarding native biodiversity.  相似文献   

16.
17.
18.
19.
20.
蝴蝶对全球气候变化响应的研究综述   总被引:2,自引:0,他引:2  
全球气候变化以及生物对其响应已引起人们的广泛关注。在众多生物中,蝴蝶被公认为是对全球气候变化最敏感的指示物种之一。已有大量的研究结果表明,蝴蝶类群已经在地理分布范围、生活史特性以及生物多样性变化等方面对全球气候变化作出了响应。根据全球范围内蝴蝶类群对气候变化响应的研究资料,尤其是欧美一些长期监测的研究成果,综述了蝴蝶类群在物种分布格局、物候、繁殖、形态特征变化、种群动态以及物种多样性变化等方面对气候变化的响应特征,认为温度升高和极端天气是导致蝴蝶物种分布格局和种群动态变化的主要因素。在此基础上,展望了我国开展蝴蝶类群对气候变化响应方面研究的未来发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号