共查询到20条相似文献,搜索用时 0 毫秒
1.
基于群落调查方法,对巨尾桉林下植物进行群落学分析.结果表明:巨尾桉林下植物共有维管束植物57科、124属、154种及变种,以禾本科和菊科的种类占优势;林下植物物种组成较为分散,优势属不明显;种子植物53科划分为6个分布区类型和2个变型,以热带分布科为主;种子植物120个属有14个分布区类型和7个变型,以热带分布属为主,植物区系成分较为复杂.林下植被可分为灌木层和草本层,但是分层现象不明显,草本层植物占优势,偶见有少量的层间植物分布.林下物种丰富度表现为草本层>灌木层;而Simpson指数、Shannon-Wiener指数、Pielou均匀度指数则表现为灌木层>草本层,生境空间异质性及人为干扰活动影响了巨尾桉林下植物组成及分布. 相似文献
2.
Mankessi F Saya AR Favreau B Doulbeau S Conéjéro G Lartaud M Verdeil JL Monteuuis O 《Physiologia plantarum》2011,143(2):178-187
Global DNA methylation was assessed by high-performance liquid chromatography (HPLC) for the first time in Eucalyptus urophylla×Eucalyptus grandis shoot tips comparing three outdoor and one in vitro sources of related genotypes differing in their physiological age. The DNA methylation levels found were consistent with those reported for other Angiosperms using the same HPLC technology. Notwithstanding noticeable time-related fluctuations within each source of plant material, methylation rate was overall higher for the mature clone (13.7%) than for the rejuvenated line of the same clone (12.6%) and for the juvenile offspring seedlings (11.8%). The in vitro microshoots of the mature clone were less methylated (11.3%) than the other outdoor origins, but the difference with the juvenile seedlings was not significant. Immunofluorescence investigations on shoot apices established that the mature source could be distinguished from the rejuvenated and juvenile origins by a higher density of cells with methylated nuclei in leaf primordia. Shoot apical meristems (SAMs) from the mature clone also showed a greater proportion and more methylated cells than SAMs from the rejuvenated and juvenile origins. The nuclei of these latter were characterized by fewer and more dispersed labeled spots than for the mature source. Our findings establish that physiological ageing induced quantitative and qualitative variations of DNA methylation at shoot tip, SAM and even cellular levels. Overall this DNA methylation increased with maturation and conversely decreased with rejuvenation to reach the lower scores and to show the immunolabeling patterns that characterized juvenile material nuclei. 相似文献
3.
François Mankessi Aubin R. Saya Frédéric Boudon Yann Guédon Fabienne Montes Marc Lartaud Jean-Luc Verdeil Olivier Monteuuis 《Trees - Structure and Function》2010,24(4):743-752
Shoot apical meristem (SAM) domes derived from five different outdoor and in vitro sources of juvenile and mature Eucalyptus urophylla × Eucalyptus grandis akin genotypes were compared. Overall measurements of SAM dome height H and diameter D ranged from 2 to 35 μm and 20 to 80 μm, with significant differences according to the various physiological origins of plant material investigated. SAM domes from the mature trees “Mat” were taller than those from the rejuvenated ministock plants “Rej”; from the in vitro microcuttings “IVM” of the same clone and also from the in vitro juvenile seedlings “IVJ”, whereas outdoor seedlings “Juv” exhibited intermediate SAM dome height. SAM domes from the rejuvenated material “Rej”, from the in vitro mature “IVM” and juvenile “IVJ” origins were also narrower than those from the outdoor seedlings “Juv” and to lesser extent than those from the mature trees “Mat”. Overall, the mature source “Mat” displayed bigger and somehow sharper hemispherical domes than those from “Rej” and “Juv”, physiologically more juvenile, or those from the in vitro origins “IVM” and “IVJ” which looked flatter and smaller. SAM dome height, diameter D and H/D values varied also significantly according to the plastochron. More specifically, H, D, and H/D SAM differences between the five origins were not significant during the early plastochron phase corresponding to leaf initiation, to become more salient as leaf structures started to elongate and to differentiate. This was particularly obvious for mature tree “Mat” SAM dome shapes which showed at this stage much higher H/D values than the other SAM sources. A shape index S used for characterizing more accurately dome shape confirmed these trends. These observations provide additional arguments to the view that juvenility in trees becomes more and more time- and shoot-tip restricted as ageing increases in the course of time during the ontogenetical process and could be ultimately confined to the most organogenic phase of SAM, from which shoot characteristics derive. 相似文献
4.
François Mankessi Aubin Saya Christelle Baptiste Sophie Nourissier Olivier Monteuuis 《Trees - Structure and Function》2009,23(5):931-940
In vitro responsiveness of microshoots derived from three genetically related and different age Eucalyptus urophylla × Eucalyptus grandis clones kept cultivated by monthly subcultures was assessed on two rooting media in relation to the time spent in culture.
Significant differences of rooting capacity were found between the two 22-year-old half sibling genotypes 147 and 149 according
to the concentration of BA added to the media and also to light intensity. The contrast was even more salient with the 1-year-old
clone S, which displayed the poorest rooting ability despite being full sibling with clone 147 and much younger. The various criteria
observed, i.e. rooting rate, number of roots produced, root length, microshoot height and shoot tip necrosis varied greatly
and differently for the three origins according to the successive time replicates of the same rooting protocols, with rooting
rates of more than 80% for clone 147 at certain dates. These results were discussed, suggesting the influence of endogenous
rhythms as the most rationale cause of the time-related fluctuations of responses observed in steady in vitro environment,
notwithstanding possible interferences of non-optimal tissue culture conditions. Such unexpected variations of rootability
between closely related genotypes, and the notable interactions pointed out between the time spent in culture and the rooting
conditions deserve to be taken into consideration before stating definitive judgment on the rooting capacities of a given
genotype for arborescent species. 相似文献
5.
Luciana de Oliveira R. Machado Gisele M. de Andrade Luis Pedro Barrueto Cid Ricardo M. Penchel Ana Cristina M. Brasileiro 《Plant cell reports》1997,16(5):299-303
Summary To develop a successful protocol forAgrobacterium-mediated transformation in plants it is essential to determine the most efficient bacterial strain/plant genotype interaction. In the present work, we evaluated the susceptibility ofEucalyptus grandis ×E. urophylla to fiveAgrobacterium rhizogenes and twelveA. tumefaciens wildtype strains. The results showed different degrees of virulence, according to the strain tested, indicating that transformation of this eucalypt hybrid by Agrobacterium-derived vectors is possible. All developed tumours showed an autonomous growth when transferred to a hormone-free medium. Some of these tumours formed shoots spontaneously, with a normal phenotype. Polymerase Chain Reaction (PCR) and Southern blot analyses were performed to confirm the absence of the oncogenic T-DNA in plants derived from these shooty tumours. 相似文献
6.
以岩溶石山生境的3年生巨尾桉人工林为研究对象,采用LI-6400型便携式光合仪测定巨尾桉在春季的叶片净光合速率(Pn)及其他生理生态因子日变化,同时测定巨尾桉光合-光响应曲线,并通过相关分析和通径分析探讨净光合速率与其他生理生态因子的关系.结果表明:巨尾桉光合-光响应曲线符合Walker的非直线双曲线模型.巨尾桉的光饱和点为1 340 μmolm-2s-1,光补偿点为14.68 μmolm-2s-1,表观量子效率(AQY)为0.06molmol-1,具有阳生植物的特点.净光合速率日变化呈现"单峰型"的特点.蒸腾速率(Tr)、气孔导度(Gs)和大气CO2浓度(Ca)是影响巨尾桉叶片净光合速率日变化的重要因子.巨尾桉有较高的水分利用效率,说明巨尾桉具有适应岩溶石山干旱的特征或避旱策略. 相似文献
7.
8.
Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang北大核心CSCD 下载免费PDF全文
Aims: Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change. Methods: The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang. Important findings: The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow < swamp meadow < typical grassland < desert grassland < alpine meadow < saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g kg-1, with the seasonal values of 0.43 g kg-1 in spring, 0.60 g kg-1 in summer, and 0.48 g kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g kg-1 in northern Xinjiang, 0.26 g kg-1 in southern Xinjiang, and 0.69 g kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow < typical grassland < swamp meadow < saline meadow < alpine meadow < desert grassland. 相似文献
9.
10.
Understanding what factors generate geographic variation in species richness is a fundamental goal of ecology and biogeography.
Water and energy are considered as the major environmental factors influencing large-scale patterns of species richness, but
their roles vary among taxa and regions. Pteridophytes are an ideal group of organisms for examining the relationship between
species richness and their environment because the distribution of pteridophytes is usually in equilibrium with contemporary
climate to a greater degree than those of seed plants and most terrestrial vertebrates partly due to the lightness of their
spores, which is highly capable of long-distance dispersal by wind, and partly due to their single-spore reproduction strategy.
Using correlation and regression analyses and structural equation modeling technique, we examine the relationship of pteridophyte
species richness in 151 localities from across China with environmental factors representing energy, water, and energy–water
balance. We found that pteridophyte species richness is correlated to water availability more strongly than to ambient energy.
Furthermore, we found that of all environmental variables considered, energy–water balance has played the most important role
in regulating pteridophyte species richness gradients in China. 相似文献
11.
Plant and Soil - This study explored the effects of Epichloë gansuensis endophyte on water use efficiency (WUE), nutrient content and biomass accumulation of Achnatherum inebrians (drunken... 相似文献
12.
Does Eucalyptus grandis invasion and removal affect soils and vegetation in the Eastern Cape Province,South Africa? 下载免费PDF全文
Many invasive alien plants drive changes in native community composition, structure and diversity. They alter soil nutrient regimes of native communities and affect native plant recovery outcomes following their removal. We assessed whether Eucalyptus grandis invasion and removal alters the soil physico‐chemical properties and native vegetation recovery in the Eastern Cape Province, South Africa. We collected samples from topsoil in E. grandis invaded sites (canopy cover > 75%), cleared sites (eight years ago) and native sites (canopy cover > 80%) and quantified soil moisture, concentrations of soil macro elements (N, C and P), pH and exchangeable cations (K, Ca, Mg, Na) as well as measured soil water repellency using the Water Droplet Penetration Time and infiltration. We conducted vegetation surveys in plots measuring 10 × 10 m. Invasion by E. grandis had varying effects on soil physico‐chemical properties, causing increase in soil pH and P, while decreasing total N and C. The removal of E. grandis also showed varying effects on soil physico‐chemical properties, but seems to have further triggered the loss of some soil nutrients (especially soil P). Soil water repellency (a measure of soil compaction) has improved in cleared sites to non‐repellent soils compared to repellent soils in invaded site. Eucalyptus grandis reduced species richness of the invaded sites. The presence of native species on cleared sites indicates a positive trajectory towards vegetation recovery. We conclude that E. grandis invasion and removal trigger varying effects on soil properties (both increases and decreases). For soil and vegetation restoration of cleared sites to be effective, active restoration techniques such as soil transfer, nutrient manipulation and native plant seeding should be considered. 相似文献
13.
Climate change and anthropogenic activities have altered the terrestrial ecosystem dynamics around the globe. Due to the complex ecosystem-atmosphere interactions at different scales, these impacts are difficult to quantify and are poorly understood, especially in developing countries with limited ground-based observations. This study analyzed the impact of climatic changes and anthropogenic activities on ecosystem net primary productivity (NPP) in India using remote sensing-based observations, correlation analysis, and Residual Trend analysis (RESTREND). Using different climate variables such as precipitation, temperature, and solar radiation, along with Land Use and Land Cover (LULC) and NPP maps, we first classified the ecosystems (ES) into two categories: natural ecosystems – influenced only by climate change (ESc), covering about 19.7% of the area, and human-influenced ecosystems – influenced by both climate change and anthropogenic activities (ESc+a), covering about 80.3% of the area. RESTREND analysis was performed on both ESc and ESc+a to analyze the relative contributions of climate change and human activities to changes in NPP. The correlation analysis between NPP and climate variables suggested that precipitation was the dominant control of NPP in about 72% area, whereas temperature and solar radiation controlled NPP in Himalayan and forest-dominated regions, respectively. The human-influenced ecosystems (ESc+a) experienced an increasing trend in NPP, whereas natural ecosystems (ESc) experienced a decreasing trend, particularly in forest-dominated regions. Overall, NPP increased in the country during the study duration. The contributions of climatic changes and anthropogenic activities varied spatially and temporally. In general, climatic factors enhanced the NPP, whereas human activities contributed to a slight decline in NPP. These findings improve our understanding of how ecosystems in India are influenced by climate change and anthropogenic activities in recent decades. The results from this study will aid in identifying ecological hotspots and key drivers for better ecosystem management strategies. 相似文献
14.
《Genomics》2021,113(6):4276-4292
Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus. 相似文献
15.
Zhen Zhang Hong Jiang Jinxun Liu Qiuan Zhu Xiaohua Wei Guomo Zhou Shirong Liu Xiuying Zhang 《生态学报》2011,31(5):246-253
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation. 相似文献
16.
Modeling the spatial–temporal dynamics of water use efficiency in Yangtze River Basin using IBIS model 下载免费PDF全文
Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation. 相似文献
17.
18.
Haibo Wang Mingguo Ma Xufeng Wang Wenping Yuan Yi Song Junlei Tan Guanghui Huang 《Ecological Research》2013,28(2):271-282
Phenology controls the seasonal activities of vegetation on land surfaces and thus plays a fundamental role in regulating photosynthesis and other ecosystem processes. Therefore, accurately simulating phenology and soil processes is critical to ecosystem and climate modeling. In this study, we present an integrated ecosystem model of plant productivity, plant phenology, and the soil freeze–thaw process to (1) improve the quality of simulations of soil thermal regimes and (2) estimate the seasonal variability of plant phenology and its effects on plant productivity in high-altitude seasonal frozen regions. We tested different model configurations and parameterizations, including a refined soil stratification scheme that included unfrozen water in frozen soil, a remotely sensed diagnostic phenology scheme, and a modified prognostic phenology scheme, to describe the seasonal variation in vegetation. After refined soil layering resolution and the inclusion of unfrozen water in frozen soil, the results show that the model adequately reproduced the soil thermal regimes and their interactions observed at the site. The inclusion of unfrozen water in frozen soil was found to have a significant effect on soil moisture simulation during the spring but only a small effect on soil temperature simulation at this site. Moreover, the performance of improved phenology schemes was good. The phenology model accurately predicted the start and end of phenology, and its precise prediction of phenology variation allows an improved simulation of vegetation production. 相似文献
19.
Water and energy are closely connected and both are very important for human development. Wastewater treatment plants (WWTPs) are central to water–energy interactions as they consume energy to remove pollutants and thus reduce the human gray water footprint on the natural water environment. In this work, we quantified energy consumption in 9 different WWTPs in south China, with different treatment processes, objects, and capacities. The energy intensity in most of these WWTPs is in the range of 0.4–0.5 kWh/m3 in 2014. Footprint methodologies were used in this paper to provide insight into the environmental changes that result from WWTPs. A new indicator “gray water footprint reduction” is proposed based on the notion of gray water footprint to better assess the role of WWTPs in reducing human impacts on water resources. We find that higher capacity and appropriate technology of the WWTPs will result in higher gray water footprint reduction. On average, 6.78 m3 gray water footprint is reduced when 1 m3 domestic sewage is treated in WWTPs in China. 13.38 L freshwater are required to produce the 0.4 kWh electrical input needed for treating 1 m3 domestic wastewater, and 0.23 kg CO2 is emitted during this process. The wastewater characteristics, treatment technologies as well as management systems have a major impact on the efficiency of energy utilization in reducing gray water footprint via these WWTPs. The additional climate impact associated with wastewater treatment should be considered in China due to the enormous annual wastewater discharge. Policy suggestions are provided based on results in this work and the features of China's energy and water distribution. 相似文献
20.
A. B. Pereira-Netto M. M. C. Carvalho-Oliveira J. A. Ramírez L. R. Galagovsky 《Plant Cell, Tissue and Organ Culture》2006,86(3):329-335
28-Homocastasterone (28-HCTS), a brassinosteroid, was used to treat in vitro-grown shoots of a hybrid between Eucalyptus grandis and E. urophylla. Treated shoots showed enhanced elongation and formation of new main shoots (the shoots originating directly from the initial explant) at low doses. Coincidently, there was reduced elongation and formation of primary lateral shoots (shoots originating from the main shoot). However, a 5α-monofluoro derivative of 28-HCTS (5F-HCTS) was unable to either stimulate elongation or formation of new main shoots, although it did stimulate elongation of primary lateral shoots. In conclusion, it is quite apparent that exogenously supplied brassinosteroids are able to change shooting patterns in Eucalyptus. These findings have practical biotechnological applications, for example on the improvement of micropropagation techniques for clonal propagation of woody angiosperms. 相似文献