首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveThis study aims to assess low-contrast image quality using a low-contrast object specific contrast-to-noise ratio (CNRLO) analysis for iterative reconstruction (IR) computed tomography (CT) images.MethodsA phantom composed of low-contrast rods placed in a uniform material was used in this study. Images were reconstructed using filtered back projection (FBP) and IR (Adaptive Iterative Dose Reduction 3D). Scans were performed at six dose levels: 1.0, 1.8, 3.1, 4.6, 7.1 and 13.3 mGy. Objective image quality was assessed by comparing CNRLO with CNR using a human observer test.ResultsCompared with FBP, IR yielded increased CNR at the same dose levels. The results of CNRLO and observer tests showed similarities or only marginal differences between FBP and IR at the same dose levels. The coefficient of determination for CNRLO was significantly better (R2 = 0.86) than that of CNR (R2 = 0.47).ConclusionFor IR, CNRLO could potentially serve as an objective index reflective of a human observer assessment. The results of CNRLO test indicated that the IR algorithm was not superior to FBP in terms of low-contrast detectability at the same radiation doses.  相似文献   

2.
PurposeTo investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses.Materials and methodsUsing an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70–80%, 40–80%, and 0–100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center.ResultsWith half-scan reconstruction at 60 bpm, a 70–80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70–80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm.ConclusionAEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose.  相似文献   

3.
ObjectiveTo evaluate the effect of cone-beam computed tomography (CBCT) image acquisition protocols on image quality, lesion detection, delineation, and patient dose.Methods100-patients and a CTDI phantom combined with an electron density phantom were examined using four different CBCT-image acquisition protocols during image-guided transarterial chemoembolization (TACE). Protocol-1 (time: 6 s, tube rotation: 360°), protocol-2 (5 s, 300°), protocol-3 (4 s, 240°) and protocol-4 (3 s, 180°) were used. The protocols were first investigated using a phantom. The protocols that were found to be clinically appropriate in terms of image quality and radiation dose were then assessed on patients. A higher radiation dose and/or a poor image quality were inappropriate for the patient imaging. Patient dose (patient-entrance dose and dose-area product), image quality (Hounsfield Unit, noise, signal-to-noise ratio and contrast-to-noise ratio), and lesion delineation (tumor-liver contrast) were assessed and compared using appropriate statistical tests. Lesion detectability, sensitivity, and predictive values were estimated for CBCT-image data using pre-treatment patient magnetic resonance imaging.ResultsThe estimated patient dose showed no statistical significance (p > 0.05) between protocols-2 and -3; the assessed image quality between these protocols manifested insignificant difference (p > 0.05). Two other phantom protocols were not considered for patient imaging due to significantly higher dose (protocols-1) and poor image quality (protocol-4). Lesion delineation and detection were insignificant (p > 0.05) between protocols-2 and -3. Lesion sensitivities generated were 81–89% (protocol-2) and 81–85% (protocol-3) for different lesion types.ConclusionData acquisition using protocols-2 and -3 provided good image quality, lesion detection and delineation with acceptable patient dose during CBCT-imaging mainly due to similar frame numbers acquired.  相似文献   

4.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

5.
PurposeTo determine fetal doses in different stages of pregnancy in three common computed tomography (CT) examinations: pulmonary CT angiography, abdomino-pelvic and trauma scan with Monte Carlo (MC) simulations.MethodsAn adult female anthropomorphic phantom was scanned with a 64-slice CT using pulmonary angiography, abdomino-pelvic and trauma CT scan protocols. Three different sized gelatin boluses placed on the phantom’s abdomen simulated different stages of pregnancy. Intrauterine dose was used as a surrogate to a dose absorbed to the fetus. MC simulations were performed to estimate uterine doses. The simulation dose levels were calibrated with volumetric CT dose index (CTDIvol) measurements and MC simulations in a cylindrical CTDI body phantom and compared with ten point doses measured with metal-oxide-semiconductor field-effect-transistor dosimeters. Intrauterine volumes and uterine walls were segmented and the respective dose volume histograms were calculated.ResultsThe mean intrauterine doses in different stages of pregnancy varied from 0.04 to 1.04 mGy, from 4.8 to 5.8 mGy, and from 9.8 to 12.6 mGy in the CT scans for pulmonary angiography, abdomino-pelvic and trauma CT scans, respectively. MC simulations showed good correlation with the MOSFET measurement at the measured locations.ConclusionsThe three studied examinations provided highly varying fetal doses increasing from sub-mGy level in pulmonary CT angiography to notably higher levels in abdomino-pelvic and trauma scans where the fetus is in the primary exposure range. Volumetric dose distribution offered by MC simulations in an appropriate anthropomorphic phantom provides a comprehensive dose assessment when applied in adjunct to point-dose measurements.  相似文献   

6.
PurposeTo provide an experimental basis for spectral optimization of iodine-enhanced CT by a quantitative analysis of image quality and radiation dose characteristics consistently measured for a large variety of scan settings at an anthropomorphic phantom.MethodsCT imaging and thermoluminescent dosimetry were performed at an anthropomorphic whole-body phantom with iodine inserts for different tube voltages (U, 70–140 kV) and current-time products (Q, 60–300 mAs). For all U-Q combinations, the iodine contrast (C), the noise level (N) and, from these, the contrast-to-noise ratio (CNR) of reconstructed CT images were determined and parameterized as a function of U, Q or the measured absorbed dose (D). Finally, two characteristic curves were derived that give the relative increase of CNR at constant D and the relative decrease of D at constant CNR when lowering U.ResultsLowering U affects the measured CNR only slightly but markedly reduces D. For example, reducing U from 120 kV to 70 kV increases the CNR at constant D by a factor of nearly 1.8 or, alternatively, reduces D at constant CNR by a factor of nearly 5.ConclusionSpectral optimization by lowering U is an effective approach to attain the necessary CNR for a specific diagnostic task at hand while at the same time reducing radiation exposure as far as practically achievable. The characteristic curves derived in this study from extensive measurements at a reference ‘person’ can support CT users in an easy-to-use manner to select an appropriate voltage for various clinical scenarios.  相似文献   

7.
8.
The purpose of this study is to measure patient skin dose in tangential breast radiotherapy. Treatment planning dose calculation algorithm such as Pencil Beam Convolution (PBC) and in vivo dosimetry techniques such as radiochromic film can be used to accurately monitor radiation doses at tissue depths, but they are inaccurate for skin dose measurement. A MOSFET-based (MOSkin) detector was used to measure skin dose in this study. Tangential breast radiotherapies (“bolus” and “no bolus”) were simulated on an anthropomorphic phantom and the skin doses were measured. Skin doses were also measured in 13 patients undergoing each of the techniques. In the patient study, the EBT2 measurements and PBC calculation tended to over-estimate the skin dose compared with the MOSkin detector (p < 0.05) in the “no bolus radiotherapy”. No significant differences were observed in the “bolus radiotherapy” (p > 0.05). The results from patients were similar to that of the phantom study. This shows that the EBT2 measurement and PBC calculation, while able to predict accurate doses at tissue depths, are inaccurate in predicting doses at build-up regions. The clinical application of the MOSkin detectors showed that the average total skin doses received by patients were 1662 ± 129 cGy (medial) and 1893 ± 199 cGy (lateral) during “no bolus radiotherapy”. The average total skin doses were 4030 ± 72 cGy (medial) and 4004 ± 91 cGy (lateral) for “bolus radiotherapy”. In some cases, patient skin doses were shown to exceed the dose toxicity level for skin erythema. Hence, a suitable device for in vivo dosimetry is necessary to accurately determine skin dose.  相似文献   

9.
PurposeTo develop and validate a variable angle stereo image based position correction methodology in an X-ray based in-house online position monitoring system.Materials and methodsA stereo imaging module that enables 3D position determination and couch correction of the patient based on images acquired at any arbitrary angle and arbitrary angular separation was developed and incorporated to the in-house SeedTracker real-time position monitoring system. The accuracy of the developed system was studied by imaging an anthropomorphic phantom implanted with radiopaque markers set to known offset positions from its reference position in an Elekta linear accelerator (LA) and associated XVI imaging system. The accuracy of the system was further validated using CBCT data set from 10 prostate SBRT patients. The time gains achieved with the stereo image based position correction was compared with the manual matching of seed positions in Digitally Reconstructed Radiographs (DRRs) and kV images in the Mosaiq record and verify system.ResultsBased on phantom and patient CBCT dataset study stereo imaging module implemented in the SeedTracker shown to have an accuracy of 0.1(σ = 0.5) mm in detecting the 3D position offset. The time comparison study showed that stereo image based methodology implemented in SeedTracker was a minimum of 80(4) s faster than the manual method implemented in Mosaiq R&V system with a maximum time saving of 146(6) s.ConclusionThe variable angle stereo image based position correction method was shown to be accurate and faster than the standard manual DRR–kV image based correction approach, leading to more efficient treatment.  相似文献   

10.
Dental CT dose evaluations are commonly performed using thermoluminescent dosimeters (TLD) inside anthropomorphic phantoms. Radiochromic films with good sensitivity in the X-ray diagnostic field have recently been developed and are commercially available as GAFCHROMIC XR-QA. There are potential advantages in the use of radiochromic films such as a more comprehensive dosimetry thanks to the adjustable size of the film samples. The purpose of this study was to investigate the feasibility of using radiochromic films for dental CT dose evaluations.Film samples were cut with a width of 5 mm and a length of 25 mm (strips), the same size as the Alderson Rando anthropomorphic phantom holes used in this study. Dental CT dose measurements were performed using simultaneously both TLD and radiochromic strips in the same phantom sites. Two equipment types were considered for dental CT examinations: a 16 slice CT and a cone beam CT. Organ equivalent doses were then obtained averaging the measurements from the sites of the same organ and effective doses were calculated using ICRP 103 weighting factors. The entire procedure was repeated four times for each CT in order to compare also the repeatability of the two dosimeter types.A linear correlation was found between the absorbed dose evaluated with radiochromic films and with TLD, with slopes of 0.930 and 0.944 (correlation r > 0.99). The maximum difference between the two dosimeter’s measurements was 25%, whereas the average difference was 7%. The measurement repeatability was comparable for the two dosimeters at cumulative doses above 15 mGy (estimated uncertainty at 1 sigma level of about 5%), whereas below this threshold radiochromic films show a greater dispersion of data, of about 10% at 1 sigma level. We obtained, using respectively Gafchromic and TLD measurements, effective dose values of 107 μSv and 117 μSv (i.e. difference of 8.6%) for the cone beam CT and of 523 μSv and 562 μSv (i.e. difference of 7%) for the multislice CT.This study demonstrates the feasibility of radiochromic films for dental CT dosimetry, pointing out a good agreement with the results obtained using TLD, with potential advantages and the chance of a more extensive dose investigation.  相似文献   

11.
AimIn measuring exit fluences, there are several sources of deviations which include the changes in the entrance fluence, changes in the detector response and patient orientation or geometry. The purpose of this work is to quantify these sources of errors.BackgroundThe use of the volumetric modulated arc therapy treatment with the help of image guidance in radiotherapy results in high accuracy of delivering complex dose distributions while sparing critical organs. The transit dosimetry has the potential of Verifying dose delivery by the linac, Multileaf collimator positional accuracy and the calculation of dose to a patient or phantom.Materials and methodsThe quantification of errors caused by a machine delivery is done by comparing static and arc picket fence test for 30 days. A RapidArc plan, created for the pelvis site was delivered without and with Rando phantom and exit portal images were acquired. The day to day dose variation were analysed by comparing the daily exit dose images during the course of treatment. The gamma criterion used for analysis is 3% dose difference and 3 mm distance to agreement with a threshold of 10% of maximum dose.ResultsThe maximum standard deviation for the static and arc picket fence test fields were 0.19 CU and 1.3 CU, respectively. The delivery of the RapidArc plans without a phantom shows the maximum standard deviation of 1.85 CU and the maximum gamma value of 0.59. The maximum gamma value for the RapidArc plan delivered with the phantom was found to be 1.2. The largest observed fluence deviation during the delivery to patient was 5.7% and the maximum standard deviation was 4.1 CU.ConclusionIt is found from this study that the variation due to patient anatomy and interfraction organ motion is significant.  相似文献   

12.
13.
《IRBM》2014,35(5):255-261
PurposeThis work sought to establish whether the choice of CT scanner calibration curve has a significant effect on dose computation using density correction methods for chest cancer.Material and methodsCIRS®062 phantom was used to calculate the Hounsfield Unit using 80, 120 and 140 kV. Four CT calibration curves were implanted in the Eclipse® TPS. Forty-two irradiation fields for 4 patients with lung cancer were included and analysed. The patients were treated with 3-dimensional radiation therapy. For each patient, 3 treatment plans were generated using exactly the same beam configuration. In plan 1, the dose was calculated using the Modified Batho (MB) method. In plan 2, the dose was calculated using the Batho power law (BPL) method. In plan 3, the dose was calculated using the Equivalent Tissue Air Ratio (ETAR) method. To evaluate the treatment plans computed by the three methods, the monitor units, dose volume histograms, conformity index, homogeneity index, planning target volumes conformity index, geometrical index and 2D gamma index were compared. The statistical analysis was carried out using Wilcoxon signed rank test.ResultsThe three density correction methods in plans 1, 2 and 3 using tested curves produced a difference less than 1% for MUs and DVH. Wilcoxon test showed a statically significant difference for MUs using ETAR method with calibration curves based on 80 and 120 kV. There was no significant difference for the quality indices between plan 1, 2 and 3, (P > 0.05), but a significant difference for the planning target volumes conformity index between plans 1, 2 and 3 (P < 0.05) was observed. The 2D gamma analysis showed that 100% of pixels had gamma  1.ConclusionThe impact of the modification of CT calibration curves on dose is negligible for chest cancer using density correction methods. One calibration curve can be used to take into account the density correction for lung.  相似文献   

14.
PurposeTo evaluate a formalism for transit dosimetry using a phantom study and prospectively evaluate the protocol on a patient population undergoing 3D conformal radiotherapy.MethodsAmorphous silicon EPIDs were calibrated for dose and used to acquire images of delivered fields. The measured EPID dose map was back-projected using the planning CT images to calculate dose at pre-specified points within the patient using commercially available software, EPIgray (DOSIsoft, France). This software compared computed back-projected dose with treatment planning system dose. A series of tests were performed on solid water phantoms (linearity, field size effects, off-axis effects). 37 patients were enrolled in the prospective study.ResultsThe EPID dose response was stable and linear with dose. For all tested field sizes the agreement was good between EPID-derived and treatment planning system dose in the central axis, with performance stability up to a measured depth of 18 cm (agreement within −0.5% at 10 cm depth on the central axis and within −1.4% at 2 cm off-axis). 126 transit images were analysed of 37 3D-conformal patients. Patient results demonstrated the potential of EPIgray with 91% of all delivered fields achieved the initial set tolerance level of ΔD of 0 ± 5-cGy or %ΔD of 0 ± 5%.ConclusionsThe in vivo dose verification method was simple to implement, with very few commissioning measurements needed. The system required no extra dose to the patient, and importantly was able to detect patient position errors that impacted on dose delivery in two of cases.  相似文献   

15.
PurposeTo investigate the relationship between image quality measurements and the clinical performance of digital mammographic systems.MethodsMammograms containing subtle malignant non-calcification lesions and simulated malignant calcification clusters were adapted to appear as if acquired by four types of detector. Observers searched for suspicious lesions and gave these a malignancy score. Analysis was undertaken using jackknife alternative free-response receiver operating characteristics weighted figure of merit (FoM). Images of a CDMAM contrast-detail phantom were adapted to appear as if acquired using the same four detectors as the clinical images. The resultant threshold gold thicknesses were compared to the FoMs using a linear regression model and an F-test was used to find if the gradient of the relationship was significantly non-zero.ResultsThe detectors with the best image quality measurement also had the highest FoM values. The gradient of the inverse relationship between FoMs and threshold gold thickness for the 0.25 mm diameter disk was significantly different from zero for calcification clusters (p = 0.027), but not for non-calcification lesions (p = 0.11). Systems performing just above the minimum image quality level set in the European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis resulted in reduced cancer detection rates compared to systems performing at the achievable level.ConclusionsThe clinical effectiveness of mammography for the task of detecting calcification clusters was found to be linked to image quality assessment using the CDMAM phantom. The European Guidelines should be reviewed as the current minimum image quality standards may be too low.  相似文献   

16.
AimTo evaluate the performance of volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.BackgroundRapidArc is a novel technique that has recently been made available for clinical use. Planning study was done for volumetric arc modulation with RapidArc against conventional IMRT for head and neck cancers.Materials and methodsTen patients with advanced tumors of the nasopharynx, oropharynx, and hypopharynx were selected for the planning comparison study. PTV was delineated for two different dose levels and planning was done by means of simultaneously integrated boost technique. A total dose of 70 Gy was delivered to the boost volume (PTV boost) and 57.7 Gy to the elective PTV (PTV elective) in 35 equal treatment fractions. PTV boost consisted of the gross tumor volume and lymph nodes containing visible macroscopic tumor or biopsy-proven positive lymph nodes, whereas the PTV elective consisted of elective nodal regions. Planning was done for IMRT using 9 fields and RapidArc with single arc, double arc. Beam was equally placed for IMRT plans. Single arc RapidArc plan utilizes full 360° gantry rotation and double arc consists of 2 co-planar arcs of 360° in clockwise and counter clockwise direction. Collimator was rotated from 35 to 45° to cover the entire tumor, which reduced the tongue and groove effect during gantry rotation. All plans were generated with 6 MV X-rays for CLINAC 2100 Linear Accelerator. Calculations were done in the Eclipse treatment planning system (version 8.6) using the AAA algorithm.ResultsDouble arc plans show superior dose homogeneity in PTV compared to a single arc and IMRT 9 field technique. Target coverage was almost similar in all the techniques. The sparing of spinal cord in terms of the maximum dose was better in the double arc technique by 4.5% when compared to the IMRT 9 field and single arc techniques. For healthy tissue, no significant changes were observed between the plans in terms of the mean dose and integral dose. But RapidArc plans showed a reduction in the volume of the healthy tissue irradiated at V15 Gy (5.81% for single arc and 4.69% for double arc) and V20 Gy (7.55% for single arc and 5.89% for double arc) dose levels when compared to the 9-Field IMRT technique. For brain stem, maximum dose was similar in all the techniques. The average MU (±SD) needed to deliver the dose of 200 cGy per fraction was 474 ± 80 MU and 447 ± 45 MU for double arc and single arc as against 948 ± 162 MU for the 9-Field IMRT plan. A considerable reduction in maximum dose to the mandible by 6.05% was observed with double arc plan. Double arc shows a reduction in the parotid mean dose when compared with single arc and IMRT plans.ConclusionRapidArc using double arc provided a significant sparing of OARs and healthy tissue without compromising target coverage compared to IMRT. The main disadvantage with IMRT observed was higher monitor units and longer treatment time.  相似文献   

17.
PurposeTo compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery.MethodsThe manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared.Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson Radiation Therapy anthropomorphic phantom.A subjective analysis was performed by neurosurgeons to compare the clinical IQ of the anthropomorphic phantom images acquired with the different i-CT systems and imaging protocols.Image uniformity, noise, contrast-to-noise-ratio (CNR), and spatial resolution were additionally assessed with the Catphan 504 phantom.ResultsO-arm i-CT caused 56% larger ED than Airo due to the high definition (HD) imaging protocol.The noise was larger for O-arm images leading to a lower CNR than that measured for Airo. Moreover, scattering and beam hardening effects were observed in the O-arm images. Better spatial resolution was measured for the O-arm system (9 lp/cm) than for Airo (4 lp/cm).For all the investigated protocols, O-arm was found to be better for identifying anatomical features important for accurate pedicle screw positioning.ConclusionsAccording to phantom measurements, the HD protocol of O-arm offered better clinical IQ than Airo but larger ED. The larger noise of O-arm images did not compromise the clinical IQ while the superior spatial resolution of this system allowed a better visibility of anatomical features important for pedicle screw positioning in the lumbar region.  相似文献   

18.
19.
PurposeNon-local means (NLM) based reconstruction method is a promising algorithm for few-view computed tomography (CT) reconstruction, but often suffers from over-smoothed image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (ART-RIANLM) is proposed.MethodsThe method consists of four steps: 1) Initializing parameters; 2) ART reconstruction using raw data; 3) Positivity constraint of the reconstructed image; 4) Image updating by RIANLM filtering. In RIANLM, two kinds of rotational invariance measures which are average gradient (AG) and region homogeneity (RH) are proposed to calculate the distance between two patches and a novel NLM filter is developed to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it is constant in NLM during the whole reconstruction process. The proposed method is validated on two digital phantoms and real projection data.ResultsIn our experiments, the searching neighborhood size is set as 15 × 15 and the similarity window is set as 3 × 3. For the simulated case of Shepp-Logan phantom, ART-RIANLM produces higher SNR (36.23 dB > 24.00 dB) and lower MAE (0.0006 < 0.0024) reconstructed images than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and recover image edges better. The result of real data case is also consistent with the simulation result.ConclusionsA RIANLM based reconstruction method for few-view CT is presented. Compared to the traditional ART-NLM method, SNR and MAE from ART-RIANLM increases 51% and decreases 75%, respectively.  相似文献   

20.
ObjectiveTo determine the relationship between estimated glomerular filtration rate (eGFR) and mortality in a retrospective cohort of older adults admitted to an acute care for the elderly (ACE) unit.Materials and methodsThe study included 1,678 patients aged 60 years and over admitted to an AEC, in Cali, Colombia, from 2012 to 2015, and followed- up until 2016. The primary outcome was mortality. Renal function (eGFR) was estimated using Modification of Diet in Renal Disease Study (MDRD-4) equation. The renal function was grouped according to the eGFR (ml/min/1.73 m2) as follows: slightly decreased (≥ 60), moderately decreased (30-59), and severely decreased (< 30). Bivariate survival and multivariate Cox regression analyses were performed.ResultsIn the univariate analysis, patients with severely decreased eGFR had higher mortality than those with a higher eGFR (P = .046). In the group with severely decreased eGFR, survival was lower in the functionally dependent group (Barthel index [IB] < 60) than in the independent group (IB  60) (log rank test; P = .001). In the multivariate analysis, there was a significant increase in the risk of death in the elderly with severely decreased eGFR (< 30) compared with slightly decreased eGFR (≥ 60) (hazard ratio [HR], 1.44; 95% confidence interval [CI]; 1.02-2.05, P = .039). There was also a significant increase in the risk of death in the dependent elderly compared to the independent ones [HR 1.72; 95% CI; 1.26-2.34, P = .000], those who had the high morbidity (≥ 4) with low albumin (< 3.2 g/dL) compared with those with low morbidity (0-3) and high albumin (≥ 3.2) [HR 1.77; 95% CI; 1.18-2.65, P = .005], and in those with a high (16-102 mg/dL) C-reactive protein (CRP) compared with those with low CRP (0-15) [HR 1.42; 95% CI; 1.01-2.01, P = .043].ConclusionsThe risk of mortality after hospital admission to an AEC unit is greater in patients with eGFR < 30. Poor functional status performance, high comorbidity, low plasma albumin, and increased inflammation markers are additional prognostic factors to be taken into account. The improvement in the functional status could improve the survival after hospitalisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号