首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Determining the biogeographical histories of rainforests is central to our understanding of the present distribution of tropical biodiversity. Ice age fragmentation of central African rainforests strongly influenced species distributions. Elevated areas characterized by higher species richness and endemism have been postulated to be Pleistocene forest refugia. However, it is often difficult to separate the effects of history and of present-day ecological conditions on diversity patterns at the interspecific level. Intraspecific genetic variation could yield new insights into history, because refugia hypotheses predict patterns not expected on the basis of contemporary environmental dynamics. Here, we test geographically explicit hypotheses of vicariance associated with the presence of putative refugia and provide clues about their location. We intensively sampled populations of Aucoumea klaineana, a forest tree sensitive to forest fragmentation, throughout its geographical range. Characterizing variation at 10 nuclear microsatellite loci, we were able to obtain phylogeographic data of unprecedented detail for this region. Using Bayesian clustering approaches, we demonstrated the presence of four differentiated genetic units. Their distribution matched that of forest refugia postulated from patterns of species richness and endemism. Our data also show differences in diversity dynamics at leading and trailing edges of the species' shifting distribution. Our results confirm predictions based on refugia hypotheses and cannot be explained on the basis of present-day ecological conditions.  相似文献   

4.
De Bruyn M  Mather PB 《Molecular ecology》2007,16(20):4295-4307
A major paradigm in evolutionary biology asserts that global climate change during the Pleistocene often led to rapid and extensive diversification in numerous taxa. Recent phylogenetic data suggest that past climatic oscillations may have promoted long-distance marine dispersal in some freshwater crustacea from the Indo-Australian Archipelago (IAA). Whether this pattern is common, and whether similar processes are acting on diversification below the species level is unknown. We used nuclear and mitochondrial molecular variation in a freshwater-dependent decapod crustacean (Macrobrachium rosenbergii), sampled widely from the IAA, to assess the impact of Pleistocene sea-level changes on lineage diversification in this species. Fitting of an isolation with migration model enabled us to reject ongoing migration among lineages, and results indicate that isolation among both mainland-mainland and mainland-island lineages arose during the mid-Pleistocene. Our data suggest a scenario of widespread marine dispersal during Pleistocene glacial maxima (in support of the 'Pleistocene marine dispersal hypothesis') when sea levels were low, and geographical distances between fresh watersheds were greatly reduced, followed by increased isolation as sea levels subsequently rose.  相似文献   

5.
    
In temperate regions of the Earth Pleistocene, climatic fluctuations significantly influenced distribution of species. However, little is known on how glacial and interglacial cycles affected range dynamics of the species occupying lower latitudes. In this study, we investigated mitochondrial DNA (mtDNA) variation and reconstructed the potential current and past (during the mid‐Holocene, 6 ka BP, and the Last Glacial Maximum, LGM, 21 ka BP) distribution of Neurergus derjugini, an endangered amphibian species endemic to the mid‐Zagros Mountains in Iran and Iraq. Six haplotypes identified in the control region (D‐loop) form a well‐supported monophyletic clade, distinct from other Neurergus species and revealing a sister relationship to Neurergus kaiseri. Nucleotide diversity quantifying mean divergence between the sequences is low and does not support the recognition of distinct evolutionary lineages in Neurergus derjugini. The landscape connectivity analysis and the haplotype parsimony network reveal higher gene flow rate between the breeding streams in the southern part of the range, while the northern populations are more isolated. The potential distribution of Neurergus derjugini is restricted to valleys close to mountain tops, wherein very high elevations and dry habitats appear to be unsuitable. During the mid‐Holocene and LGM conditions, the range of the species may have been more extended and shifted to lower elevations. These findings show retraction of the Neurergus derjugini range during the Quaternary and indicate that range dynamics of the species occupying lower latitudes may not follow a scenario of glacial retraction and postglacial expansion.  相似文献   

6.
7.
李垚  张兴旺  方炎明 《植物生态学报》2016,40(11):1164-1178
小叶栎(Quercus chenii)是华东植物区系的代表树种, 具有很高的生态、经济价值。为重建冰期以来小叶栎地理分布格局的变迁历史、了解环境因子对潜在地理分布的制约机制, 为小叶栎种质资源保护和管理提供科学依据, 该研究基于55条分布记录和8个环境变量, 利用MaxEnt模型模拟小叶栎在末次盛冰期、全新世中期、现代和2070年(温室气体排放情景为典型浓度目标8.5)的潜在分布区, 利用多元环境相似度面和最不相似变量分析探讨气候变迁过程中环境异常区域和引起潜在地理分布改变的关键因素, 综合应用贡献率及置换重要值比较、Jackknife检验评估制约现代地理分布的主要因子, 采用响应曲线确定环境变量的适宜区间。研究结果表明: MaxEnt模型的预测准确度极高, 受试者工作特征曲线下的面积(AUC值)达0.9869 ± 0.0045; 现代高度适宜区在安徽南部、浙江西部、江西东北部和湖北东部; 影响小叶栎地理分布的主要气候因子为气温和降水量, 气温更重要; 最干季平均气温可能是制约小叶栎向北分布的关键因素; 末次盛冰期时, 小叶栎高度适宜区位于东海大陆架内; 全新世中期适宜分布区轮廓已与现代近似; 2070年适宜分布区向北移, 高度适宜区面积增大, 与末次盛冰期、全新世中期和现代相比, 这一时期的气候异常程度最高。气温季节变化和降水季节变化可能是引起地理分布变迁的重要气候因素。  相似文献   

8.
    
Aim In addition to the traditionally recognized Last Glacial Maximum (LGM, 21 ka) refuge areas in the Mediterranean region, more northerly LGM distributions for temperate and boreal taxa in central and eastern Europe are increasingly being discussed based on palaeoecological and phylogeographical evidence. Our aim was to investigate the potential refuge locations using species distribution modelling to estimate the geographical distribution of suitable climatic conditions for selected rodent species during the LGM. Location Eurasia. Methods Presence/absence data for seven rodent species with range limits corresponding to the limits of temperate or boreal forest or arctic tundra were used in the analysis. We developed predictive distribution models based on the species present‐day European distributions and validated these against their present‐day Siberian ranges. The models with the best predictors of the species distributions across Siberia were projected onto LGM climate simulations to assess the distribution of climatically suitable areas. Results The best distribution models provided good predictions of the present‐day Siberian ranges of the study species. Their LGM projections showed that areas with a suitable LGM climate for the three temperate species (Apodemus flavicollis, Apodemus sylvaticus and Microtus arvalis) were largely restricted to the traditionally recognized southern refuge areas, i.e. mainly in the Mediterranean region, but also southernmost France and southern parts of the Russian Plain. In contrast, suitable climatic conditions for the two boreal species (Clethrionomys glareous and Microtus agrestis) were predicted as far north as southern England and across southern parts of central and eastern Europe eastwards into the Russian Plain. For the two arctic species (Lemmus lemmus and Microtus oeconomus), suitable climate was predicted from the Atlantic coast eastward across central Europe and into Russia. Main conclusions Our results support the idea of more northerly refuge areas in Europe, indicating that boreal species would have found suitable living conditions over much of southern central and eastern Europe and the Russian Plain. Temperate species would have primarily found suitable conditions in the traditional southern refuge areas, but interestingly also in much of the southern Russian Plain.  相似文献   

9.
为了解历史气候变化背景下分布于中国西北干旱沙漠、半干旱沙地和山地地区的孑遗灌木植物长柄扁桃(Amygdalus pedunculata)的分布与演化, 该研究利用长柄扁桃60个自然分布点和8个环境因子, 整合GIS空间分析和最大熵模型(MaxEnt), 分析珍稀濒危保护物种长柄扁桃末次间冰期(LIG)、末次盛冰期(LGM)和当前的历史地理分布格局变化及其环境驱动力。基于各时期长柄扁桃的分布模型模拟数据及自然种群的叶绿体基因测序数据, 利用最小成本路径方法, 模拟LIG时期以来长柄扁桃可能的扩散路径。利用R语言“ggbiplot”程序包对各时期长柄扁桃适生区的历史环境变量进行主成分分析(PCA), 分析影响长柄扁桃历史分布格局变化的关键气候因子。结果表明: (1) LIG时期以来, 长柄扁桃的历史分布经历了显著收缩和末次盛冰期后的扩张, LIG至LGM时期, 分布于库布齐沙漠东部、毛乌素沙地北部、陕西北部、阴山北部、乌兰察布高原南部、浑善达克沙地的适宜分布区明显收缩; LGM时期至今, 长柄扁桃在库布齐沙漠东部、毛乌素沙地中部沿北部阴山向东, 以及浑善达克沙地西部均发生了显著扩张。3个时期长柄扁桃均在内蒙古高原中西部存在高度适宜性分布区, 包括毛乌素沙地北缘、库布齐沙漠东缘以及大青山, 这些地区很可能是长柄扁桃的冰期避难所。北部阴山和毛乌素沙地边缘是长柄扁桃种群迁移过程中重要的扩散廊道; (2) LIG至LGM时期, 气温因子: 最冷月最低气温、平均气温日较差和最热月最高气温均呈显著下降的趋势, 冷干气候对长柄扁桃的冰期分布存在较大限制, 适生区显著收缩。而LGM时期至今, 降水因子最湿月降水量和降水量季节性均显著上升, 长柄扁桃在库布齐沙漠东部、毛乌素沙地中部、阴山以及浑善达克沙地西部发生显著扩张, 降水因子也是影响当前适宜分布区的关键限制性因子。  相似文献   

10.
    
There is an urgent need for more ecologically realistic models for better predicting the effects of climate change on species’ potential geographic distributions. Here we build ecological niche models using MAXENT and test whether selecting predictor variables based on biological knowledge and selecting ecologically realistic response curves can improve cross‐time distributional predictions. We also evaluate how the method chosen for extrapolation into nonanalog conditions affects the prediction. We do so by estimating the potential distribution of a montane shrew (Mammalia, Soricidae, Cryptotis mexicanus) at present and the Last Glacial Maximum (LGM). Because it is tightly associated with cloud forests (with climatically determined upper and lower limits) whose distributional shifts are well characterized, this species provides clear expectations of plausible vs. implausible results. Response curves for the MAXENT model made using variables selected via biological justification were ecologically more realistic compared with those of the model made using many potential predictors. This strategy also led to much more plausible geographic predictions for upper and lower elevational limits of the species both for the present and during the LGM. By inspecting the modeled response curves, we also determined the most appropriate way to extrapolate into nonanalog environments, a previously overlooked factor in studies involving model transfer. This study provides intuitive context for recommendations that should promote more realistic ecological niche models for transfer across space and time.  相似文献   

11.
12.
13.
    
Unlike other migratory hummingbirds in North America, the broad‐tailed hummingbird (Selasphorus platycercus) exhibits both long‐distance migratory behaviour in the USA and sedentary behaviour in Mexico and Guatemala. We examined the evolution of migration linked to its northward expansion using a multiperspective approach. We analysed variation in morphology, mitochondrial and nuclear DNA, estimated migration rates between migratory and sedentary populations, compared divergence times with the occurrence of Quaternary climate events and constructed species distribution models to predict where migratory and sedentary populations resided during the Last Glacial Maximum (LGM) and Last Interglacial (LIG) events. Our results are consistent with a recent northward population expansion driven by migration from southern sedentary populations. Phylogeographical analyses and population genetics methods revealed that migratory populations in the USA and sedentary populations in Mexico of the platycercus subspecies form one admixed population, and that sedentary populations from southern Mexico and Guatemala (guatemalae) undertook independent evolutionary trajectories. Species distribution modelling revealed that the species is a niche tracker and that the climate conditions associated with modern obligate migrants in the USA were not present during the LIG, which provides indirect evidence for recent migratory behaviour in broad‐tailed hummingbirds on the temporal scale of glacial cycles. The finding that platycercus hummingbirds form one genetic population and that suitable habitat for migratory populations was observed in eastern Mexico during the LIG also suggests that the conservation of overwintering sites is crucial for obligate migratory populations currently facing climate change effects.  相似文献   

14.
    
Ecological niche models (ENM) have been used to reconstruct potential distributions during the Last Glacial Maximum (LGM)—or other time periods—and this use is increasingly common in zoological studies. For this reason, we urgently need understanding factors affecting these predictions. Here, we examine how the use of different Global Circulation Models (GCMs) affects the variability in species' potential distributions during the LGM and how the degree of model extrapolation and its associated uncertainty depends on the GCM used. We develop these issues using two North American shrews, Notiosorex crawfordi and Cryptotis alticola, inhabiting two environmentally different regions. First, we compared paleoclimates in these two regions simulated by three GCMs: Community Climate System Model (CCSM), Model for Interdisciplinary Research on Climate (MIROC), and the Max‐Planck‐Institute für Meteorologie model (MPI). Then, we used maxent to estimate the LGM potential distribution of these two mammals under the three GCMs to assess the spatial variability and extrapolation uncertainty associated with idiosyncrasies of GCM. MIROC estimated noticeably more different climatic conditions than CCSM and MPI in the study areas during the LGM, and its pattern of environmental conditions was distributed differently. The MIROC scenario suggested a remarkable different prediction of potential distribution for both species, being more dramatic for the high mountain shrew, C. alticola. In particular, climatic differences among GCMs resulted in differences in the factors that limit and drive the potential distribution of the species during the LGM. Equally dramatic was the disagreement of extrapolation areas among GCMs. MIROC showed a greater number of pixels where extrapolation is required in both regions. Our findings should be taken into consideration when identifying areas of endemism, dynamic geographic barriers, and glacial refugia. When projecting into alternative scenarios of LGM climate, the idiosyncrasies of each GCM should be explicitly taken into account.  相似文献   

15.
    
Climatic fluctuations during the Last Glacial Maximum (LGM) exerted a profound influence on biodiversity patterns, but their impact on bryophytes, the second most diverse group of land plants, has been poorly documented. Approximate Bayesian computations based on coalescent simulations showed that the post‐glacial assembly of European bryophytes involves a complex history from multiple sources. The contribution of allochthonous migrants was 95–100% of expanding populations in about half of the 15 investigated species, which is consistent with the globally balanced genetic diversities and extremely low divergence observed among biogeographical regions. Such a substantial contribution of allochthonous migrants in the post‐glacial assembly of Europe is unparalleled in other plants and animals. The limited role of northern micro‐refugia, which was unexpected based on bryophyte life‐history traits, and of southern refugia, is consistent with recent palaeontological evidence that LGM climates in Eurasia were much colder and drier than what palaeoclimatic models predict.  相似文献   

16.
香果树是中国特有的单种属孑遗树种,探讨末次冰盛期以来香果树在中国的潜在地理分布格局及其变化,对研究茜草科乃至中国亚热带植物区系的系统发育、古生态和古气候变迁等具有重要作用。研究基于最大熵MaxEnt模型与ArcGIS空间分析技术,利用香果树分布点位信息与气候数据,构建其在末次冰盛期(LGM)、全新世中期(MID)、当前(1960—1990年)以及未来(2061—2080年)的潜在地理分布格局,探明其分布格局的变化趋势,揭示引起其潜在地理分布格局改变的关键因子。结果表明,香果树当前适生区总面积约197.575×104 km2,主要位于中国亚热带地区,其中高适生区集中分布于四川盆周山地、武陵山与武夷山地区,最干季度平均温、最湿月降水量、最冷季度降水量是限制其分布的主要气候因子。末次冰盛期时香果树广泛分布于中国亚热带地区,随后适生区开始缩减且向内陆退缩,全新世中期后适生区面积继续缩减并向高纬度地区迁移。随着全球气候变暖,在不同排放情景下香果树适宜生境面积均进一步缩减并向西与高纬度地区迁移。总体而言,从末次冰盛期至未来,香果树适生区呈现持续缩减并向西...  相似文献   

17.
    
By selecting codistributed, closely related montane sedges from the Rocky Mountains that are similar in virtually all respects but one—their microhabitat affinities—we test predictions about how patterns of genetic variation are expected to differ between Carex nova, an inhabitant of wetlands, and Carex chalciolepis, an inhabitant of drier meadows, slopes, and ridges. Although contemporary populations of the taxa are similarly isolated, the distribution of glacial moraines suggests that their past population connectedness would have differed. Sampling of codistributed population pairs from different mountain ranges combined with the resolution provided by over 24,000 single nucleotide polymorphism loci supports microhabitat‐mediated differences in the sedges’ patterns of genetic variation that are consistent with their predicted differences in the degree of isolation of ancestral source populations. Our results highlight how microhabitat preferences may interact with glaciations to produce fundamental differences in the past distributions of presently codistributed species. We discuss the implications of these findings for generalizing the impacts of climate‐induced distributional shifts for communities, as well as for the prospects of gaining insights about species‐specific deterministic processes, not just deterministic community‐level responses, from comparative phylogeographic study.  相似文献   

18.
19.
         下载免费PDF全文
《植物生态学报》2016,40(11):1164
Aims Quercus chenii is a representative species of the flora in East China, with high ecological and economic values. Here, we aim to simulate the changes in the distribution pattern of this tree species following the Last Glacial Maximum (LGM) and to explore how climatic factors constrain the potential distribution, so as to provide scientific basis for protection and management of the germplasm resources in Q. chenii.
Methods Based on 55 presence point records and data on eight environmental variables, we simulated the potential distribution of Q. chenii during the Last Glacial Maximum, mid-Holocene, present and the year 2070 (the scenario of greenhouse gas emission is Representative Concentration Pathway 8.5) with MaxEnt model. The novel climate area and main factors influencing the changes in distribution pattern were evaluated by multivariate environmental similarity surface analysis and the most dissimilar variable analysis. The importance of environmental variables was evaluated by percent contribution, permutation importance and Jackknife test. Response curves were used to estimate the suitable value range of each variable.
Important findings The accuracy of MaxEnt model is very high, as indicated by the value of the area under the receiver operator characteristic curve of 0.9869 ± 0.0045. The highly suitable region for the present distribution covers southern Anhui, western Zhejiang, northeastern Jiangxi and eastern Hubei. The main factors affecting the potential distribution of Q. chenii are temperature and precipitation, with the former being more important. Mean temperature of the driest quarter is likely the main factor restricting Q. chenii growing in the north. During the LGM, the East China Sea Shelf occurs as the highly suitable region for the distribution of Q. chenii. In the mid-Holocene, the outline of the suitable area for the distribution of Q. chenii is similar to the present. The potential distribution region will likely move northward and experience an area expansion under the climate condition in 2070. At that time, climate anomaly will also be most severe compared to the LGM, mid-Holocene and present. Temperature seasonality and precipitation seasonality may be the main climatic factors promoting changes in the distribution pattern of Q. chenii.  相似文献   

20.
    
Despite a broad distribution, general habitat requirements, and a large dispersal potential, bobcats (Lynx rufus) exhibit a genetic division that longitudinally transects central North America. We investigated (1) whether the climate of the Last Glacial Maximum (LGM; 21 kya) isolated bobcats into refugia and also whether the current climate influences gene flow between the segregate populations and (2) whether the geographical patterns in cranial morphology reflect population identity. We created ecological niche models (ENMs) to evaluate climatic suitability and to estimate distributions of the disparate populations under both historical (LGM) and contemporary conditions. We used two‐dimensional geometric morphometric methods to evaluate variations in the cranium and mandible. These variations were then regressed across geographical variables to assess morphological differences throughout the range of the bobcat. ENMs projected onto LGM climate provided evidence of refugia during the LGM via increased suitability in the north‐west and south‐east portions of this species' range. Contemporarily, our models suggest that the Great Plains may be restricting bobcat migration and gene flow, effectively maintaining disparate populations. Morphological analyses identified a significant linear trend in shape variation across latitudinal and longitudinal gradients rather than distinct morphological divergence between lineages. Similar shape variations, however, did converge in approximate locations of assumed refugia. The findings of the present study provide a robust assessment of the biogeographical considerations for the population genetic structure of bobcats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号