首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo investigate lens dose reduction with organ based tube current modulation (TCM) using the Monte Carlo method.MethodsTo calculate lens dose with organ based TCM, 36 pairs of X-ray sources with bowtie filters were placed around the patient head using a projection angle interval of 10° for one rotation of Computed Tomography (CT). Each projection was simulated respectively. Both voxelized and stylized eye models and Chinese reference male phantoms were used in the simulation, and tube voltages 80, 100, 120 and 140 kVp were used.ResultsDose differences between two eye models were less than 20%, but large variations were observed among dose results from different projections of all tube voltages investigated. Dose results from 0° (AP) directions were 60 times greater than those from 180° (PA) directions, which enables organ based TCM reduce lens doses by more than 47%.ConclusionsOrgan based TCM may be used to reduce lens doses. Stylized eye models are more anatomically realistic compared with voxelized eye models and are more reliable for dose evaluation.  相似文献   

2.
PurposeTo determine the eye lens dose of the Interventional Cardiology (IC) personnel using optically stimulated luminescent dosimeter (OSLD) and the prevalence and risk of radiation – associated lens opacities in Thailand.Methods and results48 IC staff, with age- and sex- matches 37 unexposed controls obtained eye examines. Posterior lens change was graded using a modified Merriam-Focht technique by two independent ophthalmologists. Occupational exposure (mSv) was measured in 42 IC staff, using 2 OSLD badges place at inside lead apron and at collar. Annual eye lens doses (mSv) were also measured using 4 nanoDots OSL placed outside and inside lead glass eyewear. The prevalence of radiation-associated posterior lens opacities was 28.6% (2/7) for IC, 19.5% (8/41) for nurses, and 2.7% (1/37) for controls. The average and range of annual whole body effective dose, Hp(10), equivalent dose at skin of the neck, Hp(0.07) and equivalent dose at eye lens, Hp(3) were 0.80 (0.05–6.79), 5.88 (0.14–35.28), and 5.73 (0.14–33.20) mSv respectively. The annual average and range of eye lens dose using nano Dots OSL showed the outside lead glass eyewear on left and right sides as 8.06 (0.17–32.45), 3.55(0.06–8.04) mSv and inside left and right sides as 3.91(0.05–14.26) and 2.44(0.06–6.24) mSv respectively.ConclusionEye lens doses measured by OSLD badges and nano Dot dosimeter as Hp(10), Hp(0.07) and Hp(3). The eyes of the IC personnel were examined annually by two ophthalmologists for the prevalence of cataract induced by radiation.  相似文献   

3.
PurposeIn cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient’s eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed. This study selects the most suitable eye lens protection material for CBCT from among nine materials by evaluating the dose reduction rate and image quality.MethodsTo determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. For image quality assessment, the artifact index was calculated based on the pixel value and image noise within various regions of interest in a water phantom.ResultsThe protective materials exhibited dose reduction; however, streak artifacts were observed near the materials. The dose reduction rate and the degree of the artifact varied significantly depending on the protective material. The dose reduction rates were 14.6%, 14.2%, and 26.0% when bismuth shield: normal (bismuth shield in the shape of an eye mask), bismuth shield: separate (two separate bismuth shields), and lead goggles were used, respectively. The “separate” bismuth shield was found to be effective in dose reduction without lowering the image quality.ConclusionWe found that bismuth shields and lead goggles are suitable protective devices for the optimal reduction of lens doses.  相似文献   

4.
PurposeThis study aimed to measure the eye lens doses received by physicians and other medical staff participating in non-vascular imaging and interventional radiology procedures in Japan.Material and methodsFrom October 2014 to March 2017, 34 physicians and 29 other medical staff engaged in non-vascular imaging and interventional radiology procedures at 18 Japanese medical facilities. These professionals wore radioprotective lead glasses equipped with small, optically stimulated luminescence dosimeters and additional personal dosimeters at the neck during a 1-month monitoring period. The Hp(3) and the Hp(10) and Hp(0.07) were obtained from these devices, respectively. The monthly Hp(3), Hp(10), and Hp(0.07) for each physician and other medical staff member were then rescaled to a 12-month period to enable comparisons with the revised occupational equivalent dose limit for the eye lens.ResultsAmong physicians, the average annual Hp(3) values measured by the small luminescence dosimeters on radioprotective glasses were 25.5 ± 38.3 mSv/y (range: 0.4–166.8 mSv/y) and 9.3 ± 16.6 mSv/y (range: 0.3–82.4 mSv/y) on the left and right sides, respectively. The corresponding values for other medical staff were 3.7 ± 3.1 mSv/y (range: 0.4–10.4 mSv/y) and 3.2 ± 2.7 mSv/y (range: 0.5–11.5 mSv/y), respectively.ConclusionsThe eye lens doses incurred by physicians and other medical staff who engaged in non-vascular imaging and interventional radiology procedures in Japan were provided. Physicians should wear radioprotective glasses and use additional radioprotective devices to reduce the amount of eye lens doses they receive.  相似文献   

5.
PurposeTo provide normalized scatter exposure data and methods for reliable estimation of cumulative effective dose and eye-lens equivalent dose to personnel involved in fluoroscopically guided cardiac catheterization (FGCC) procedures.MethodsAn anthropomorphic phantom was placed supine on the table of a modern digital C-arm angiographic system and 17 different fluoroscopic projections commonly employed during FGCC procedures were represented. Scatter exposure rates at the waist and eye level were measured for varying exposure parameters and position in the operating room. The effect of beam field size, patient size, use of radioprotective garments and small variations in projection angulation and table height on scatter radiation was investigated.ResultsApart from the position and use of radio-protective garments, radiation burden to operators during fluoroscopic guidance was found to remarkably depend beam field size (>45% reduction if a 10 × 10 cm2 instead of 15 × 15 cm2 fluoroscopy beam is used) and patient size (>25% increased scatter for obese patients). In contrast, the variation of measured scatter exposure from a given projection was found to be <10% when the source to skin distance was altered by ±10 cm or beam angulation of a specific projection was altered by ±10°.ConclusionPresented scatter exposure data charts and methods allow for prospective and retrospective estimation of effective dose and eye-lens equivalent dose to personnel involved in any FGCC procedure. Projection specific maps of scatter exposure produced may enhance familiarization of involved medical staff to good radiation protection practice and optimization of working habits in the cardiac catheterization lab.  相似文献   

6.
Measurements of eye lens dose using over apron dosimeters with a geometric correction factor is an international accepted practice. However, further knowledge regarding geometric correction factors in different contexts is required. The authors studied the correlation between eye lens dose and over apron dosimetry for different medical specialties in eleven hospitals, using a standardized protocol, two independent over apron dosimeters (worn at chest and at neck levels) and a dedicated calibration procedure. The results show good correlation between subjects working on the same medical specialty for 5 specialties: Interventional Radiology, Vascular Surgery, Vascular Radiology, Hemodynamics and Neuroradiology. The geometric correction factors resulting from this study could be used to estimate eye lens dose using over apron dosimeters, which are more comfortable than eye lens dosimeters, as reported by the study subjects, as long as the increased uncertainty of the over apron dosimetry compared to the dedicated eye lens dosimetry is acceptable.  相似文献   

7.
This work investigates the patient eye lens dose and x-ray scatter to the operator expected for a proposed hybrid Angio-MR concept. Two geometries were simulated for comparative assessment: a standard C-arm device for neuro-angiography applications and an innovative hybrid Angio-MR system concept, proposed by Siemens Healthineers. The latter concept is based on an over-couch x-ray tube and a detector inside an MRI system, with the aim of allowing combined, simultaneous MRI and x-ray imaging for procedures such as neurovascular interventions (including x-ray fluoroscopy and angiography imaging, 3D imaging, diffusion, and perfusion). To calculate the scattered radiation dose to the physician, Monte Carlo simulations were performed. Dose estimates of simplified models of the brain and eyes of both the patient and the physician and of the physician’s torso and legs have been calculated. A number of parameters were varied in the simulation including x-ray spectrum, field of view (FOV), x-ray tube angulation, presence of shielding material and position of the physician. Additionally, 3D dose distributions were calculated in the vertical and horizontal planes in both setups. The patient eye lens dose was also calculated using a detailed voxel phantom and measured by means of thermoluminescent dosimeters (TLDs) to obtain a more accurate estimate. Assuming the same number of x-rays and the same size of the irradiated area on the patient’s head, the results show a significant decrease in the scattered radiation to the physician for the Angio-MR system, while large increases, depending on setup, are expected to patient eye lens dose.  相似文献   

8.
A prey's body orientation relative to a predator's approach path may affect risk of fleeing straight ahead. Consequently, prey often turn before fleeing. Relationships among orientation, turn, and escape angles and between these angles and predation risk have not been studied in terrestrial vertebrates and have rarely been studied in the field. Escape angles are expected to lead away from predators and be highly variable to avoid being predictable by predators. Using approach speed as a risk factor, we studied these issues in the zebra‐tailed lizard, Callisaurus draconoides. Lizards fled away from human simulated predators, but most did not flee straight away. Escape angles were variable, as expected under the unpredictability hypothesis, and had modes at nearly straight away (i.e., 0°) and nearly perpendicular to the predator's approach path (90°). The straight away mode suggests maximal distancing from the predator; the other mode suggests maintaining ability to monitor the predator or possibly an influence of habitat features such as obstacles and refuges that differ among directions. Turn angles were larger when orientation was more toward the predator, and escape angles were closer to straight away when turn angles were larger. Turning serves to reach a favorable fleeing direction. When orientation angle was more toward the predator, escape angle was unaffected, suggesting that turn angle compensates completely for increased risk of orientation toward the predator. When approached more rapidly, lizards fled more nearly straight away, as expected under greater predation risk. Turn angles were unrelated to approach speed.  相似文献   

9.
BackgroundTo the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction.Materials and methodsAn IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated.ResultsThe MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose.ConclusionsigIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery.  相似文献   

10.
PurposeThis study reports a sensitivity enhancement of gold-coated contact lens-type ocular in vivo dosimeters (CLODs) for low-dose measurements in computed tomography (CT).MethodsMonte Carlo (MC) simulations were conducted to evaluate the dose enhancement from the gold (Au) layers on the CLODs. The human eye and CLODs were modeled, and the X-ray tube voltages were defined as 80, 120, and 140 kVp. The thickness of the Au layer attached to a CLOD ranged from 100 nm to 10 μm. The thickness of the active layer ranged from 20 to 140 μm. The dose ratio between the active layer of the Au-coated CLOD and a CLOD without a layer, i.e., the dose enhancement factor (DEF), was calculated.ResultsThe DEFs of the first 20-μm thick active layer of the 5-μm thick Au-coated CLOD were 18.4, 19.7, 20.2 at 80, 120, and 140 kVp, respectively. The DEFs decreased as the thickness of the active layer increased. The DEFs of 100-nm to 5-μm thick Au layers increased from 1.7 to 5.4 for 120-kVp X-ray tube voltage when the thickness of the active layer was 140 μm.ConclusionsThe MC results presented a higher sensitivity of Au-coated CLODs (∼20-times higher than that of CLODs without a gold layer). Au-coated CLODs can be applied to an evaluation of very low doses (a few cGy) delivered to patients during CT imaging.  相似文献   

11.
In order to address the recent concerns over a possible increasing in brain tumour mortality among interventional radiologists and cardiologist, this work evaluated the exposure conditions of the operator’s brain during interventional procedures using Monte Carlo simulations with anthropomorphic phantoms. The absorbed doses in several predefined segments of the operator’s brain were estimated in a typical interventional radiology irradiation scenario. The doses were normalized to the KAP values simulated for ten X-ray beam qualities and four projections (PA, RAO 25°, LAO 25° and CRA 25°). For the interventional radiology scenario, because of the position of the operator, no difference was found in the exposure between the left and right regions of the brain for the first operator. However, for the second operator standing at a farer distance from the tube, the exposure of the left part of the brain is up to two times higher than that of the right part. The results are in agreement with dose measurements reported in the literature. The conversion factors, obtained as the absorbed dose per KAP, can be used to obtain a first estimate of the exposure of the brain of the operators during interventional procedures.  相似文献   

12.
PurposeTo perform a complete evaluation on radiation doses, received by primary and assistant medical staff, while performing different vascular interventional radiology procedures.Materials and methodsWe evaluated dose received in different body regions during three categories of vascular procedures: lower limb angiography (Angiography), lower limb percutaneous transluminal angioplasty (Angioplasty) and stent graft placement for abdominal aortic aneurysm treatment (A. A. A. Treatment). We positioned the dosimeters near the eye lens, thyroid, chest, abdomen, hands, and feet of the interventional physicians. Equivalent dose was compared with annual dose limits for workers in order to determine the maximum number of procedures per year that each physician could perform. We assessed 90 procedures.ResultsWe found the highest equivalent doses in the A. A. A. Treatment, in which 90% of the evaluations indicated at least one region receiving more than 1 mSv per procedure. Angioplasty was the only procedural modality that provided statistically different doses for different professionals, which is an important aspect on regards to radiological protection strategies. In comparison with the dose limits, the most critical region in all procedures was the eye lens.ConclusionsSince each body region of the interventionist is exposed to different radiation levels, dose distribution measurements are essential for radiological protection strategies. These results indicate that dosimeters placed in abdomen instead of chest may represent more accurately the whole body doses received by the medical staff. Additional dosimeters and a stationary shield for the eye lens are strongly recommended.  相似文献   

13.
In this work we investigated the way in which conversion coefficients from air kerma-area product for effective doses (CCE) and entrance skin doses (CCESD) in interventional radiology (IR) are affected by variations in the filtration, projection angle of the X-ray beam, lead curtain attached to the surgical table, and suspended shield lead glass in regular conditions of medical practice. Computer simulations were used to model an exposure scenario similar to a real IR room. The patient and the physician were represented by MASH virtual anthropomorphic phantoms, inserted in the MCNPX 2.7.0 radiation transport code. In all cases, the addition of copper filtration also increased the CCE and CCESD values. The highest CCE values were obtained for lateral, cranial and caudal projections. In these projections, the X-ray tube was located above the table, and more scattered radiation reached the middle and upper portions of the physician trunk, where most of the radiosensitive organs are located. Another important result of this study was to show that the physician's protection is 358% higher when the lead curtain and suspended shield lead glasses are used. The values of CCE and CCESD, presented in this study, are an important resource for calculation of effective doses and entrance skin doses in clinical practice.  相似文献   

14.
In head computed tomography, radiation upon the eye lens (as an organ with high radiosensitivity) may cause lenticular opacity and cataracts. Therefore, quantitative dose assessment due to exposure of the eye lens and surrounding tissue is a matter of concern. For this purpose, an accurate eye model with realistic geometry and shape, in which different eye substructures are considered, is needed. To calculate the absorbed radiation dose of visual organs during head computed tomography scans, in this study, an existing sophisticated eye model was inserted at the related location in the head of the reference adult male phantom recommended by the International Commission on Radiological Protection (ICRP). Then absorbed doses and distributions of energy deposition in different parts of this eye model were calculated and compared with those based on a previous simple eye model. All calculations were done using the Monte Carlo code MCNP4C for tube voltages of 80, 100, 120 and 140 kVp. In spite of the similarity of total dose to the eye lens for both eye models, the dose delivered to the sensitive zone, which plays an important role in the induction of cataracts, was on average 3% higher for the sophisticated model as compared to the simple model. By increasing the tube voltage, differences between the total dose to the eye lens between the two phantoms decrease to 1%. Due to this level of agreement, use of the sophisticated eye model for patient dosimetry is not necessary. However, it still helps for an estimation of doses received by different eye substructures separately.  相似文献   

15.
IntroductionThe International Atomic Energy Agency (IAEA) organized the 3rd international conference on radiation protection (RP) of patients in December 2017. This paper presents the conclusions on the interventional procedures (IP) session.Material and methodsThe IAEA conference was conducted as a series of plenary sessions followed by various thematic sessions. “Radiation protection of patients and staff in interventional procedures” session keynote speakers presented information on: 1) Risk management of skin injuries, 2) Occupational radiation risks and 3) RP for paediatric patients. Then, a summary of the session-related papers was presented by a rapporteur, followed by an open question-and-answer discussion.ResultsSixty-seven percent (67%) of papers came from Europe. Forty-four percent (44%) were patient studies, 44% were occupational and 12% were combined studies. Occupational studies were mostly on eye lens dosimetry. The rest were on scattered radiation measurements and dose tracking. The majority of patient studies related to patient exposure with only one study on paediatric patients. Automatic patient dose reporting is considered as a first step for dose optimization. Despite efforts, paediatric IP radiation dose data are still scarce. The keynote speakers outlined recent achievements but also challenges in the field. Forecasting technology, task-specific targeted education from educators familiar with the clinical situation, more accurate estimation of lens doses and improved identification of high-risk professional groups are some of the areas they focused on.ConclusionsManufacturers play an important role in making patients safer. Low dose technologies are still expensive and manufacturers should make these affordable in less resourced countries. Automatic patient dose reporting and real-time skin dose map are important for dose optimization. Clinical audit and better QA processes together with more studies on the impact of lens opacities in clinical practice and on paediatric patients are needed.  相似文献   

16.
The optical properties of an enlarged optical model of the tipof a slug (a glass tube filled with sucrose solution) of Dictyosteliumdiscoideum were studied to validate the hypothesis that theorganism orients itself with respect to lateral light usinga lens effect: Light is focussed by refraction onto the distalside of the slug where the higher "signal" compared to the frontside causes a turn toward the light. Light was effectively focusedeven when the model deviated only as little as 10° fromthe light direction. Slugs of D. discoideum strains HO596 and HO813 show bidirectionalphototaxis: They orient themselves at some angle on either sideof the incident light beam. This angle is {small tilde}80°in HO596 and {small tilde}70° in HO813. We suggest thatthis phenomenon can be explained by the optical properties ofthe slug such as absorption and scattering, shape of the tipor location and extension of the light-sensitive zone. The angleof orientation with respect to light is regulated by a balancebetween a turn toward and a turn away from the light direction. (Received October 15, 1985; Accepted February 10, 1986)  相似文献   

17.
PurposeTo analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose.MethodsThe eye lens dose was estimated in terms of Hp(0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The Hp(0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (PKA) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions.ResultsThe annual eye lens doses estimated on goggles were 4.13 ± 0.93 and 4.98 ± 1.28 mSv. Over the aprons, the doses obtained were 10.83 ± 0.99 and 11.97 ± 1.44 mSv. The correlation between the goggles and the apron dose was R2 = 0.89, with a ratio of 0.38. The correlation with the patient dose was R2 = 0.40, with a ratio of 1.79 μSv Gy−1 cm−2. The dose per procedure obtained over the aprons was 102 ± 16 μSv, and on goggles 40 ± 9 μSv. The eye lens dose normalized to PKA was 2.21 ± 0.58 μSv Gy−1 cm−2.ConclusionsMeasurements of personal dose equivalent over the paediatric cardiologist’s apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used.  相似文献   

18.
ObjectiveThe main risk factor for the development of glaucoma, a retinal disease leading to blindness, is an increase in the intraocular pressure (IOP). Reducing this IOP can be obtained by eye drops but unfortunately the disease can still progress because IOP increases are painless, can fluctuate and, thus remain undetected during a visit to an ophthalmologist. The “MATEO” ANR project aims to develop sensors embedded in a contact lens for continuously IOP monitoring.Materials and methodsPressure sensors were produced by MEMS technology and tested with pig eyes obtained at a local slaughterhouse. Solution was injected by 50 μL steps in the eye with a Hamilton syringe while IOP was monitored in parallel with a TonoVET system and an industrial pressure transducer inserted in the injection tubing system.ResultsOur first pressure sensor prototypes were generated and inserted in a lens compatible with eye application. A wireless system was developed to excite the sensor. At same time, it was recorded the data in components inserted into spectacles and a pocket recorder. In parallel, we showed that injecting a solution in the eye anterior chamber triggered an IOP increase smaller and more stable than injections in the posterior chamber. Finally, a direct correlation was observed between IOP measured on the corneal surface with the TonoVET and the pressure transducer placed close to eye injection point.DiscussionOur results indicate that our in vitro model on pig eyes is adequate to test our new lens sensor. Finally, the pressure sensor was successfully inserted in contact lens opening the way for their in vitro and in vivo preclinical validation.  相似文献   

19.
The optimal shape of the front profile of the thick lens in the eye of the scallop,Pecten is theoretically, geometric optically investigated as a function of the refractive index of the lens and the retina, as well as of the geometrical parameters of the eye. The shape of the theoretical front surfaces is compared with that of the real, experimentally determined front face of the lens. The degree of correction of the lens for spherical aberration of the reflecting spherical mirror in thePecten eye is examined. The optimal shape of the front profile of the lens depends strongly on a set of parameters, such that a certain fine tuning is required among them to assure a full correction for spherical aberration. The extreme variability of the eye parameters and the shape of the front face of the lens in the scallop is inconsistent with this fine tuning requirement. The degree of correction of thePecten lens for spherical aberration might not be as good as it could be, a possible biooptical reason for which is discussed.  相似文献   

20.
PurposeTo perform a detailed evaluation of dose calculation accuracy and clinical feasibility of Mobius3D. Of particular importance, multileaf collimator (MLC) modeling accuracy in the Mobius3D dose calculation algorithm was investigated.MethodsMobius3D was fully commissioned by following the vendor-suggested procedures, including dosimetric leaf gap (DLG) optimization. The DLG optimization determined an optimal DLG correction factor which minimized the average difference between calculated and measured doses for 13 patient volumetric-modulated arc therapy (VMAT) plans. Two sets of step-and-shoot plans were created to examine MLC and off-axis open fields modeling accuracy of the Mobius3D dose calculation algorithm: MLC test set and off-axis open field test set. The test plans were delivered to MapCHECK for the MLC tests and an ionization chamber for the off-axis open field test, and these measured doses were compared to Mobius3D-calculated doses.ResultsThe mean difference between the calculated and measured doses across the 13 VMAT plans was 0.6% with an optimal DLG correction factor of 1.0. The mean percentage of pixels passing gamma from a 3%/1 mm gamma analysis for the MLC test set was 43.5% across the MLC tests. For the off-axis open field tests, the Mobius3D-calculated dose for 1.5 cm square field was −4.6% lower than the chamber-measured dose.ConclusionsIt was demonstrated that Mobius3D has dose calculation uncertainties for small fields and MLC tongue-and-groove design is not adequately taken into consideration in Mobius3D. Careful consideration of DLG correction factor, which affects the resulting dose distributions, is required when commissioning Mobius3D for patient-specific QA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号