首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

2.
The aim of this study was to compare the pharmacokinetics of baicalin and wogonoside in rats following oral administration of Xiaochaihu Tang (Minor Radix Bupleuri Decoction) and Radix scutellariae extract. Thus, a specific LC–MS method was developed and validated for the determination of these flavonoids in the plasma of rats after oral administration Xiaochaihu Tang and Radix scutellariae extract. Chromatographic separation was performed on a Zorbax SB C18 column (150 mm × 4.6 mm, i.d.: 5 μm) with 0.1% formic acid in water and acetonitrile by linear gradient elution. Baicalin, wogonoside and carbamazepine (internal standard, I.S.) were detected in select-ion-monitoring (SIM) mode with a positive electrospray ionization (ESI) interface. The following ions: m/z 447 for baicalin, m/z 461 for wogonoside and m/z 237 for the I.S. were used for quantitative determination. The calibration curves were linear over the concentration ranges from 0.1231 to 6.156 μg mL−1 for baicalin and 0.08832 to 4.416 μg mL−1 for wogonoside. The lower limit of detection (LLOD) based on a signal-to-noise ratio of 2 was 0.06155 μg mL−1 for baicalin and 0.04416 μg mL−1 for wogonoside. Intra-day and inter-day precisions (RSD%) were within 10% and accuracy (RE%) ranged from −6.4 to 4.4%. The extraction recovery at three QC concentrations ranged from 74.7 to 86.0% for baicalin and from 71.3 to 83.7% for wogonoside. The plasma concentrations of baicalin and wogonoside in rats at designated time periods after oral administration were successfully determined using the validated method, pharmacokinetic parameters were estimated by a non-compartment model. Following oral administration of Xiaochaihu Tang and Radix scutellariae extract, the t1/2 of baicalin was 3.60 ± 0.90 and 5.64 ± 1.67, the Cmax1 was 1.64 ± 0.99 and 5.66 ± 2.02, the tmax1 was 0.13 ± 0.05 and 0.20 ± 0.07, the Cmax2 was 2.43 ± 0.46 and 3.18 ± 1.66, and the tmax2 were 6.40 ± 1.67 and 5.66 ± 2.02, respectively. Following oral administration of Xiaochaihu Tang and Radix scutellariae extract, the t1/2 of wogonoside was 4.97 ± 1.68 and 7.71 ± 1.55, the Cmax1 was 1.39 ± 0.83 and 1.45 ± 0.37, the tmax1 was 0.21 ± 0.20 and 0.17 ± 0.01, the Cmax2 was 1.90 ± 0.55 and 1.42 ± 0.70, and the tmax2 was 5.60 ± 1.67 and 5.20 ± 1.79, respectively. A significant difference (p < 0.05) was observed for t1/2, and the elimination of baicalin and wogonoside in Xiaochaihu Tang was increased.  相似文献   

3.
Oxypurinol is the active metabolite of allopurinol which is used to treat hyperuricaemia associated with gout. Both oxypurinol and allopurinol inhibit xanthine oxidase which forms uric acid from xanthine and hypoxanthine. Plasma oxypurinol concentrations vary substantially between individuals and the source of this variability remains unclear. The aim of this study was to develop an HPLC-tandem mass spectrometry method to measure oxypurinol in urine to facilitate the study of the renal elimination of oxypurinol in patients with gout. Urine samples (50 μL) were prepared by dilution with a solution of acetonitrile/methanol/water (95/2/3, v/v; 2 mL) that contained the internal standard (8-methylxanthine; 1.5 mg/L), followed by centrifugation. An aliquot (2 μL) was injected. Chromatography was performed on an Atlantis HILIC Silica column (3 μm, 100 mm × 2.1 mm, Waters) at 30 °C, using a mobile phase comprised of acetonitrile/methanol/50 mM ammonium acetate in 0.2% formic acid (95/2/3, v/v). Using a flow rate of 0.35 mL/min, the analysis time was 6.0 min. Mass spectrometric detection was by selected reactant monitoring (oxypurinol: m/z 150.8 → 108.0; internal standard: m/z 164.9 → 121.8) in negative electrospray ionization mode. Calibration curves were prepared in drug-free urine across the range 10–200 mg/L and fitted using quadratic regression with a weighting factor of 1/x (r2 > 0.997, n = 7). Quality control samples (20, 80, 150 and 300 mg/L) were used to determine intra-day (n = 5) and inter-day (n = 7) accuracy and imprecision. The inter-day accuracy and imprecision was 96.1–104% and <11.2%, respectively. Urinary oxypurinol samples were stable when subjected to 3 freeze–thaw cycles and when stored at room temperature for up to 6 h. Samples collected from 10 patients, not receiving allopurinol therapy, were screened and showed no significant interferences. The method was suitable for the quantification of oxypurinol in the urine of patients (n = 34) participating in a clinical trial to optimize therapy of gout with allopurinol.  相似文献   

4.
A rapid, selective and sensitive ultra performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method was developed to simultaneously determine venlafaxine (VEN) and O-desmethylvenlafaxine (ODV) in human plasma. Sample pretreatment involved a one-step extraction with diethyl ether of 0.5 mL plasma. The separation was carried out on an ACQUITY UPLC? BEH C18 column with 10 mmol/L ammonium acetate and methanol as the mobile phase at a flow rate of 0.30 mL/min. The detection was performed on a triple–quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. The linear calibration curves for VEN and ODV were both obtained in the concentration range of 0.200–200 ng/mL (r2  0.99) with the lower limit of quantification (LLOQ) of 0.200 ng/mL. The intra- and inter-day precision (relative standard deviation, R.S.D.) values were less than 13% and the accuracy (relative error, R.E.) was within ±5.3% and ±3.6% for VEN and ODV. The method herein described was superior to previous methods in sensitivity and sample throughput and successfully applied to clinical pharmacokinetic study of venlafaxine sustained-release capsule in healthy male volunteers after oral administration.  相似文献   

5.
A simple and reproducible high performance liquid chromatography–tandem mass spectrometric method was developed for methocarbamol analysis in human plasma. Methocarbamol and the internal standard (IS) were extracted by a protein precipitation method. Under isocratic separation condition the chromatographic run time was 3.0 min. The calibration curve was linear over a range of 150–12,000 ng/mL with good intraday assay and interday assay precision (CV% < 10.9%). The method was proven to be sensitive and selective for the analysis of methocarbamol in human plasma for bioequivalence study.  相似文献   

6.
A rapid and systematic strategy based on liquid chromatography–mass spectrometry (LC–MS) profiling and liquid chromatography–tandem mass spectrometry (LC–MS–MS) substructural techniques was utilized to elucidate the degradation products of paclitaxel, the active ingredient in Taxol. This strategy integrates, in a single instrumental approach, analytical HPLC, UV detection, full-scan electrospray MS, and MS–MS to rapidly and accurately elucidate structures of impurities and degradants. In these studies, degradants induced by acid, base, peroxide, and light were profiled using LC–MS and LC–MS–MS methodologies resulting in an LC–MS degradant database which includes information on molecular structures, chromatographic behavior, molecular mass, and MS–MS substructural information. The stressing conditions which may cause drug degradation are utilized to validate the analytical monitoring methods and serve as predictive tools for future formulation and packaging studies. Degradation products formed upon exposure to basic conditions included baccatin III, paclitaxel sidechain methyl ester, 10-deacetylpaclitaxel, and 7-epipaclitaxel. Degradation products formed upon exposure to acidic conditions included 10-deacetylpaclitaxel and the oxetane ring opened product. Treatment with hydrogen peroxide produced only 10-deacetylpaclitaxel. Exposure to high intensity light produced a number of degradants. The most abundant photodegradant of paclitaxel corresponded to an isomer which contains a C3–C11 bridge. These methodologies are applicable at any stage of the drug product cycle from discovery through development. This library of paclitaxel degradants provides a foundation for future development work regarding product monitoring, as well as use as a diagnostic tool for new degradation products.  相似文献   

7.
Here we report a method capable of quantifying ginsenoside Rg3 in human plasma and urine. The method was validated over linear range of 2.5–1000.0 ng mL−1 for plasma and 2.0–20.0 ng mL−1 for urine using ginsenoside Rg1 as I.S. Compounds were extracted with ethyl acetate and analyzed by HPLC/MS/MS (API-4000 system equipped with ESI interface and a C18 column). The inter- and intra-day precision and accuracy of QC samples were ≤8.5% relative error and were ≤14.4% relative standard deviation for plasma; were ≤5.6% and ≤13.3% for urine. The Rg3 was stable after 24 h at room temperature, 3 freeze/thaw cycles and 131 days at −30 °C. This method has been applied to pharmacokinetic study of ginsenoside Rg3 in human.  相似文献   

8.
A rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of picamilon concentration in human plasma. Picamilon was extracted from human plasma by protein precipitation. High performance liquid chromatography separation was performed on a Venusil ASB C18 column with a mobile phase consisting of methanol ?10 mM ammonium acetate–formic acid (55:45:01, v/v/v) at a flow rate of 0.65 ml/min. Acquisition of mass spectrometric data was performed in selected reaction monitoring mode, using the transitions of m/z 209.0  m/z (78.0 + 106.0) for picamilon and m/z 152.0  m/z (93.0 + 110.0) for paracetamol (internal standard). The method was linear in the concentration range of 1.00–5000 ng/ml for the analyte. The lower limit of quantification was 1.00 ng/ml. The intra- and inter-assay precision were below 13.5%, and the accuracy was between 99.6% and 101.6%. The method was successfully applied to characterize the pharmacokinetic profiles of picamilon in healthy volunteers. This validated LC–MS/MS method was selective and rapid, and is suitable for the pharmacokinetic study of picamilon in humans.  相似文献   

9.
Melatonin is a hormone mainly involved in the regulation of circadian and seasonal rhythms in both invertebrates and vertebrates. Despite the identification of melatonin in many insects, its involvement in the insect seasonal response remains unclear. A liquid chromatography tandem mass spectrometry (LC–MS/MS) method has been developed for melatonin analysis in aphids (Acyrthosiphon pisum) for the first time. After comparing two different procedures and five extraction solvents, a sample preparation procedure with a mixture of methanol/water (50:50) was selected for melatonin extraction. The method was validated by analyzing melatonin recovery at three spiked concentrations (5, 50 and 100 pg/mg) and showed satisfactory recoveries (75–110%), and good repeatability, expressed as relative standard deviation (<10%). Limits of detection (LOD) and quantitation (LOQ) were 1 pg/mg and 5 pg/mg, respectively. Eight concentration levels were used for constructing the calibration curves which showed good linearity between LOQ and 200 times LOQ. The validated method was successfully applied to 26 aphid samples demonstrating its usefulness for melatonin determination in insects. This is -to our knowledge- the first identification of melatonin in aphids by LC–MS/MS.  相似文献   

10.
A rapid and sensitive liquid chromatography–electrospray ionization tandem mass spectrometry method (LC–ESI-MS/MS) was developed and validated for the determination of goserelin in rabbit plasma. Various parameters affecting plasma sample preparation, LC separation, and MS/MS detection were investigated, and optimized conditions were identified. Acidified plasma samples were applied to Oasis® HLB solid-phase extraction (SPE) cartridges. Extracted samples were evaporated under a stream of nitrogen and then reconstituted with 100 μL mobile phase A. The separation was achieved on a Capcell-Pak C18 (2.0 mm × 150 mm, 5 μm, AQ type) column with a gradient elution of solvent A (0.05% acetic acid in deionized water/acetonitrile = 85/15; v/v) and solvent B (acetonitrile) at a flow rate of 250 μL/min. The LC–MS/MS system was equipped with an electrospray ion source operating in positive ion mode. Multiple-reaction monitoring (MRM) of the precursor–product ion transitions consisted of m/z 635.7 → m/z 607.5 for goserelin and m/z 424.0 → m/z 292.1 for cephapirin (internal standard). The proposed method was validated by assessing specificity, linearity, limit of quantification (LOQ), intra- and inter-day precision and accuracy, recovery, and stability. Linear calibration curves were obtained in the concentration range of 0.1–20 ng/mL (the correlation coefficients were above 0.99). The LOQ of the method was 0.1 ng/mL. Results obtained from the validation study of goserelin showed good accuracy and precision at concentrations of 0.1, 1, 5, 10, and 20 ng/mL. The validated method was successfully applied to a pharmacokinetic study of goserelin after a single subcutaneous injection of 3.6 mg of goserelin in healthy white rabbits.  相似文献   

11.
A liquid chromatographic-tandem mass spectrometric (LC–MS–MS) method with a rapid and simple sample preparation was developed for the determination of scopolamine in biological fluids. Scopolamine and the internal standard atropine in serum samples were extracted and cleaned up by using an automated solid phase extraction method. Microdialysis samples were directly injected into the LC–MS system. The mass spectrometer was operated in the multi reaction monitoring mode. A good linear response over the range of 20 pg/ml to 5 ng/ml was demonstrated. The accuracy for added scopolamine ranged from 95.0 to 104.0%. The lower limit of quantification was 20 pg/ml. This method is suitable for pharmacokinetic studies.  相似文献   

12.
A rapid, sensitive and specific high performance liquid chromatography–tandem mass spectrometric (HPLC–MS/MS) method has been developed for quantification of mitoxantrone in rat plasma. The analyte and palmatine (internal standard) were extracted from plasma samples with diethyl ether–dichloromethane (3:2, v/v) and separated on a C18 column. The chromatographic separation was achieved within 2.5 min using methanol–10 mM ammonium acetate containing 0.1% acetic acid as the mobile phase at a flow rate of 0.2 mL/min. The method was linear over the range of 0.5–500 ng/mL. The lower limit of quantification (LLOQ) was 0.5 ng/mL. Finally, the method was successfully applied to a pharmacokinetic study of mitoxantrone in rats following intravenous administration.  相似文献   

13.
A simple, sensitive and high throughput liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC–ESI-MS/MS) method has been developed for the simultaneous determination of valacyclovir and acyclovir in human plasma using fluconazole as internal standard (IS). The method involved solid phase extraction of the analytes and IS from 0.5 mL human plasma with no reconstitution and drying steps (direct injection of eluate). The chromatographic separation was achieved on a Gemini C18 analytical column using isocratic mobile phase, consisting of 0.1% formic acid and methanol (30:70 v/v), at a flow-rate of 0.8 mL/min. The precursor  product ion transition for valacyclovir (m/z 325.2  152.2), acyclovir (m/z 226.2  152.2) and IS (m/z 307.1  220.3) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range 5.0–1075 ng/mL and 47.6–10225 ng/mL for valacyclovir and acyclovir respectively. The mean recovery of valacyclovir (92.2%), acyclovir (84.2%) and IS (103.7%) from spiked plasma samples was consistent and reproducible. The bench top stability of valacyclovir and acyclovir was extensively evaluated in buffered and unbuffered plasma. It was successfully applied to a bioequivalence study in 41 healthy human subjects after oral administration of 1000 mg valacyclovir tablet formulation under fasting condition.  相似文献   

14.
Pyrrole (Py)–imidazole (Im) polyamides synthesized by combining N-methylpyrrole and N-methylimidazole amino acids have been identified as novel candidates for gene therapy. In this study, a sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) with an electrospray ionization (ESI) source was developed and validated for the determination and quantification of Py–Im polyamide in rat plasma. Py–Im polyamide was extracted from rat plasma by solid-phase extraction (SPE) using a Waters Oasis® HLB cartridge. Separation was achieved on an ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 50 mm) column by gradient elution using acetonitrile:distilled water:acetic acid (5:95:0.1, v/v/v) and acetonitrile:distilled water:acetic acid (95:5:0.1, v/v/v). The method was validated over the range of 10–1000 ng/mL and the lower limit of quantification (LLOQ) was 10 ng/mL. This method was successfully applied to the investigation of the pharmacokinetics of Py–Im polyamide after intravenous administration.  相似文献   

15.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed to determine the concentration of eptifibatide in human plasma. Following protein precipitation, the analyte was separated on a reversed-phase C18 column. Acetonitrile:5 mM ammonium acetate:acetic acid (30:70:0.1, v/v/v) was used at a flow-rate of 0.5 mL/min with the isocratic mobile phase. An API 4000 tandem mass spectrometer equipped with a Turbo IonSpray ionization source was used as the detector and was operated in the positive ion mode. “Truncated” multiple reaction monitoring using the transition of m/z 832.6  m/z 832.6 and m/z 931.3  m/z 931.3 was performed to quantify eptifibatide and the internal standard (EPM-05), respectively. The method had a lower limit of quantification of 4.61 ng/mL for eptifibatide. The calibration curve was demonstrated to be linear over the concentration range of 4.61 ? 2770 ng/mL. The intra- and inter-day precisions were less than 10.5% for each QC level, and the inter-day relative errors were 2.0%, 5.6%, and 2.8% for 9.22, 184, and 2490 ng/mL, respectively. The validated method was successfully applied to the quantification of eptifibatide concentration in human plasma after intravenous (i.v.) administration of a 270-μg/kg bolus of eptifibatide and i.v. administration of eptifibatide at a constant rate of infusion of 2 μg/(kg min) for 18 h in order to evaluate the pharmacokinetics.  相似文献   

16.
A rapid, selective and highly sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of eptifibatide in human plasma. Eptifibatide and the internal standard (IS), EPM-05, were extracted from plasma samples using solid phase extraction. Chromatographic separation was performed on a C18 column at a flow rate of 0.5 mL/min. Detection of eptifibatide and the IS was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in positive ion mode. Traditional multiple reaction monitoring (MRM) using the transition of m/z 832.6 → m/z 646.4 and m/z 931.6 → m/z 159.4 was performed to quantify eptifibatide and the IS, respectively. The calibration curves were linear over the range of 1–1000 ng/mL with the lower limit of quantitation validated at 1 ng/mL. The intra- and inter-day precisions were within 13.3%, while the accuracy was within ±7.6% of nominal values. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of eptifibatide after intravenous (i.v.) administration of a 45 μg/kg bolus of eptifibatide to 8 healthy volunteers.  相似文献   

17.
In this paper, a method for the sensitive and reproducible analysis of lignocaine and its four principal metabolites, monoethylxylidide (MEGX), glycylxylidide (GX), 3-hydroxylignocaine (3-HO-LIG), 4-hydroxylignocaine (4-HO-LIG) in equine urine and plasma samples is presented. The method uses liquid chromatography coupled to tandem mass spectrometry operating in electrospray ionisation positive ion mode (+ESI) via multiple reaction monitoring (MRM). Sample preparation involved solid-phase extraction using a mixed-mode phase. The internal standard adopted was lignocaine-d10. Lignocaine and its metabolites were successfully resolved using an octadecylsilica reversed-phase column using a gradient mobile phase of acetonitrile and 0.1% (v/v) aqueous formic acid at a flow rate of 300 μL/min. Target analytes and the internal standard were determined by using the following transitions; lignocaine, 235.2 > 86.1; 3-HO-LIG and 4-HO-LIG, 251.2 > 86.1; MEGX, 207.1 > 58.1; GX, 179.1 > 122.1; and lignocaine-d10, 245.2 > 96.1. Calibration curves were generated over the range 1–100 ng/mL for plasma samples and 1–1000 ng/mL for urine samples. The method was validated for instrument linearity, repeatability and detection limit (IDL), method linearity, repeatability, detection limit (MDL), quantitation limit (LOQ) and recovery. The method was successfully used to analyse both plasma and urine samples following a subcutaneous administration of lignocaine to a thoroughbred horse.  相似文献   

18.
YH439 is a potential drug candidate for the treatment of various hepatic disorders. YH439 and its three metabolites have been identified in rat urine by liquid chromatography–mass spectrometry (LC–MS) and by gas chromatography (GC)–MS. Identification of YH439 and its metabolites was established by comparing their GC retention times and mass spectra with those of the synthesized authentic standards. Both electron impact- and positive chemical ionization MS have been evaluated. The metabolism study was performed in the rat using oral administration of the drug. A major metabolite (YH438) was identified as the N-dealkylation product of YH439. Other identified metabolites were caused by the loss of the methyl thiazolyl amine group (metabolite II) from YH439, the isopropyl hydrogen malonate group (metabolite IV) and the decarboxylated product (metabolite III) of metabolite II.  相似文献   

19.
A sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for the first time for the estimation of Tenacissoside A in the rats’ plasma, which is the major active constituent in Marsdenia tenacissima. Tenacissoside A was extracted from the rats’ plasma by using liquid–liquid extraction (LLE), medroxyprogesterone acetate was used as the internal standard. An Alltech C18 column (250 mm × 4.6 mm, 5 μm) was used to provide chromatographic separation by detection with mass spectrometry operating in selected ion monitoring (SIM) mode. The method was validated over the concentration range of 1–250 ng/mL for Tenacissoside A. The precisions within and between-batch (CV%) were both less than 15% and accuracy ranged from 90 to 102%. The lower limit of quantification was 1 ng/mL and extraction recovery was 88.3% on average. The validated method was used to study the pharmacokinetic profile of Tenacissoside A in rat after administration.  相似文献   

20.
Perchlorate can competitively inhibit iodide uptake by the thyroid gland (TG) via the sodium/iodide symporter, consequently reducing the production of thyroid hormones (THs). Until recently, the effects of perchlorate on TH homeostasis are being examined through measurement of serum levels of TH, by immunoassay (IA)-based methods. IA methods are fast, but for TH analysis, they are compromised by the lack of adequate specificity. Therefore, selective and sensitive methods for the analysis of THs in TG are needed, for assessment of the effects of perchlorate on TH homeostasis. In this study, we developed a method for the analysis of six THs: l-thyroxine (T4), 3,3′,5-triiodo-l-thyronine (T3), 3,3′,5′-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2), 3,3′-diiodo-l-thyronine (3,3′-T2), and 3-iodo-l-thyronine (3-T1) in TG, using liquid chromatography (LC)–tandem mass spectrometry (MS/MS). TGs used in this study were from rats that had been placed on either iodide-deficient diet or iodide-sufficient diet, and that had either been provided with perchlorate in drinking water (10 mg/kg/day) or control water. TGs were extracted by pronase digestion and then analyzed by LC–MS/MS. The instrumental calibration range for each TH ranged from 1 to 200 ng/ml and showed a high linearity (r > 0.99). The method quantification limits (LOQs) were determined to be 0.25 ng/mg TG for 3-T1; 0.33 ng/mg TG for 3,3′- and 3,5-T2; and 0.52 ng/mg TG for rT3, T3, and T4. Rats were placed on an iodide-deficient or -sufficient diet for 2.5 months, and for the last 2 weeks of that period were provided either perchlorate (10 mg/kg/day) in drinking water or control water. Iodide deficiency and perchlorate administration both reduced TG stores of rT3, T3, and T4. In iodide-deficient rats, perchlorate exacerbated the reduction in levels of THs in TG. With the advances in analytical methodology, the use of LC–MS/MS for measurement of hormone levels in TG will allow more comprehensive evaluations of the hypothalamic-pituitary–thyroid axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号