首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThe aim of the present work was to evaluate small field size output factors (OFs) using the latest diamond detector commercially available, PTW-60019 microDiamond, over different CyberKnife systems. OFs were measured also by silicon detectors routinely used by each center, considered as reference.MethodsFive Italian CyberKnife centers performed OFs measurements for field sizes ranging from 5 to 60 mm, defined by fixed circular collimators (5 centers) and by Iris variable aperture collimator (4 centers). Setup conditions were: 80 cm source to detector distance, and 1.5 cm depth in water. To speed up measurements two diamond detectors were used and their equivalence was evaluated. MonteCarlo (MC) correction factors for silicon detectors were used for comparing the OF measurements.ResultsConsidering OFs values averaged over all centers, diamond data resulted lower than uncorrected silicon diode ones. The agreement between diamond and MC corrected silicon values was within 0.6% for all fixed circular collimators. Relative differences between microDiamond and MC corrected silicon diodes data for Iris collimator were lower than 1.0% for all apertures in the totality of centers. The two microDiamond detectors showed similar characteristics, in agreement with the technical specifications.ConclusionsExcellent agreement between microDiamond and MC corrected silicon diode detectors OFs was obtained for both collimation systems fixed cones and Iris, demonstrating the microDiamond could be a suitable detector for CyberKnife commissioning and routine checks. These results obtained in five centers suggest that for CyberKnife systems microDiamond can be used without corrections even at the smallest field size.  相似文献   

2.
PurposeThe increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6 MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6 MV beam was also considered for comparison.MethodsShort term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2–2.2 mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40 × 40 cm2 to 0.6 × 0.6 cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector.ResultsMicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40 × 40 cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3 × 3 cm2) microDiamond and the unshielded silicon diode were in good agreement.ConclusionsMicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2 mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1 cm correction factors accounting for fluence perturbation and volume averaging could be required.  相似文献   

3.
PurposeThe aim of the study was a multicenter evaluation of MLC&jaws-defined small field output factors (OF) for different linear accelerator manufacturers and for different beam energies using the latest synthetic single crystal diamond detector commercially available. The feasibility of providing an experimental OF data set, useful for on-site measurements validation, was also evaluated.MethodsThis work was performed in the framework of the Italian Association of Medical Physics (AIFM) SBRT working group. The project was subdivided in two phases: in the first phase each center measured OFs using their own routine detector for nominal field sizes ranging from 10 × 10 cm2 to 0.6 × 0.6 cm2. In the second phase, the measurements were repeated in all centers using the PTW 60019 microDiamond detector.ResultsThe project enrolled 30 Italian centers. Micro-ion chambers and silicon diodes were used for OF measurements in 24 and 6 centers respectively. Gafchromic films and TLDs were used for very small field OFs in 3 and 1 centers. Regarding the measurements performed with the user’s detectors, OF standard deviations (SD) for field sizes down to 2 × 2 cm2 were in all cases <2.7%. In the second phase, a reduction of around 50% of the SD was obtained using the microDiamond detector.ConclusionsThe measured values presented in this multicenter study provide a consistent dataset for OFs that could be a useful tool for improving dosimetric procedures in centers. The microDiamond data present a small variation among the centers confirming that this detector can contribute to improve overall accuracy in radiotherapy.  相似文献   

4.
AimThe aim of this study was to determine the Inflection Points (IPs) of flattening filter free (FFF) CyberKnife dose profiles for cone-based streotactic radiotherapy. In addition, dosimetric field sizes were determined.BackgroundThe increased need for treatment in the early stages of cancer necessitated the treatment of smaller tumors. However, efforts in that direction required the modeling accuracy of the beam. Removal of the flattening filter (FF) from the path of x-ray beam has provided the solution to those efforts, but required a different normalization approach for the beam to ensure the delivery of the dose accurately. As a solution, researchers proposed a normalization factor based on IPs.Materials and methodsMeasurements using microDiamond (PTW 60019), Diode SRS (PTW 60018) and Monte Carlo (MC) calculations of dose profiles were completed at SAD 80 cm and 5 cm depth for 15–60 mm cones. Performance analysis of detectors with respect to MC calculation was carried out. Gamma evaluation method was used to determine achievable acceptability criteria for FFF CyberKnife beams.ResultsAcceptability within (3%–0.5 mm) was found to be anachievable criterion for all dose profile measurements of the cone beams used in this study. To determine the IP, the first and second derivatives of the dose profile were determined via the cubic spline interpolation technique.ConclusionDerivatives of the interpolated profiles showed that locations of IPs and 50% isodose points coincide.  相似文献   

5.
PurposeIn modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector.Materials and methodsThe project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8 × 0.8 cm2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10 cm. Set-up conditions were 10 cm depth in water phantom at SSD 90 cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer.ResultsData analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD) < 1%; SD < 0.4 mm for the profile penumbra was obtained, while FWHM measurements showed SD < 0.5 mm. OF measurements showed SD < 1.5% for field size greater than 2 × 2 cm2. Median OFs values were in agreement with the recent bibliography.ConclusionsHigh degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements.  相似文献   

6.
IntroductionTo commission the Monte Carlo (MC) algorithm based model of CyberKnife robotic stereotactic system (CK) and evaluate the feasibility of patient specific QA using the ArcCHECK cylindrical 3D-array (AC) with Multiplug inserts (MP).ResultsFour configurations were used for simple beam setup and two for patient QA, replacing water equivalent inserts by lung. For twelve collimators (5–60 mm) in simple setup, mean (SD) differences between MC and RayTracing algorithm (RT) of the number of points failing the 3%/1 mm gamma criteria were 1(1), 1(3), 1(2) and 1(2) for the four MP configurations. Tracking fiducials were placed within AC for patient QA. Single lung insert setup resulted in mean gamma-index 2%/2 mm of 90.5% (range [74.3–95.9]) and 82.3% ([66.8–94.5]) for MC and RT respectively, while 93.5% ([86.8–98.2]) and 86.2% ([68.7–95.4]) in presence of largest inhomogeneities, showing significant differences (p < 0.05).DiscussionAfter evaluating the potential effects, 1.12 g/cc PMMA and 0.09 g/cc lung material assignment showed the best results. Overall, MC-based model showed superior results compared to RT for simple and patient specific testing, using a 2%/2 mm criteria. Results are comparable with other reported commissionings for flattening filter free (FFF) delivery. Further improvement of MC calculation might be challenging as Multiplan has limited material library.ConclusionsThe AC with Multiplug allowed for comprehensive commissioning of CyberKnife MC algorithm and is useful for patient specific QA for stereotactic body radiation therapy. MC calculation accuracy might be limited due to Multiplan’s insufficient material library; still results are comparable with other reported commissioning measurements using FFF beams.  相似文献   

7.
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62 MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62 MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.  相似文献   

8.
AimThe aim of the study was to evaluate computed tomography (CT) artifacts and image recognition of the CyberKnife system. Regarding fiducial markers, VISICOIL of 0.5 mm × 5.0 mm and 0.75 mm × 5.0 mm, ball-shaped Gold Anchor (GA) of 0.28 mm × 10 mm and 0.28 mm × 20 mm, were compared with the standard cylinder marker of 0.9 mm × 3.0 mm (ACCULOC).BackgroundRecently, various kinds of commercial fiducial markers have been available in CyberKnife treatment.Materials and methodsThe CT images of a water equivalent gel with each fiducial marker were acquired for the evaluation of CT artifacts. The evaluation was performed using the standard deviation of Hounsfield Unit (HU) value for a rectangle region near the fiducial marker. Then, to evaluate the image recognition, each fiducial marker was located to overlap in the target locating system (TLS) for the two sites; the vertebral bone and the pubic bone.ResultsFor CT artifacts, the standard deviations of the VISICOIL of 0.5 mm × 5.0 mm was the smallest. The image recognition of four fiducial markers had a value close to the standard cylinder marker and was feasible for common use, but was slightly poorer when using GA of 0.28 mm × 10 mm in the dynamic conditions.ConclusionOur results indicated that VISICOIL 0.5 × 5.0 mm and the GAs can be used nearly always for CyberKnife treatment in spite of their much thinner needles than those of cylinder types.  相似文献   

9.
PurposeAim of this work is the assessment of build-up and superficial doses of different clinical Head&Neck plans delivered with Helical TomoTherapy (HT) (Accuray, Sunnyvale, CA). Depth dose profiles and superficial dose points were measured in order to evaluate the Treatment Planning System (TPS) capability of an accurate dose modeling in regions of disequilibrium. Geometries and scattering conditions were investigated, similar to the ones generally encountered in clinical treatments.MethodsMeasurements were performed with two dosimeters: Gafchromic® EBT3 films (Ashland Inc., Wayne, NJ) and a synthetic single crystal diamond detector (PTW-Frieburg microDiamond, MD). A modified version of the Alderson RANDO phantom was employed to house the detectors. A comparison with TPS data was carried out in terms of dose difference (DD) and distance-to-agreement (DTA).ResultsDD between calculated data and MD measurements are within 4% even in points with high spatial dose variation. For depth profiles, EBT3 data show a DDmax of 3.3% and DTAmax of 2.2 mm, in low and high gradient regions, respectively, and compare well with MD data. EBT3 superficial points always results in measured doses lower than TPS evaluated ones, with a maximum DTA value of 1.5 mm.ConclusionsDoses measured with the two devices are in good agreement and compare well with calculated data. The deviations found in the present work are within the reference tolerance level, suggesting that the HT TPS is capable of a precise dose estimation both in superficial regions and in correspondence with interfaces between air and PMMA.  相似文献   

10.
PurposeTo investigate the relationship between image quality measurements and the clinical performance of digital mammographic systems.MethodsMammograms containing subtle malignant non-calcification lesions and simulated malignant calcification clusters were adapted to appear as if acquired by four types of detector. Observers searched for suspicious lesions and gave these a malignancy score. Analysis was undertaken using jackknife alternative free-response receiver operating characteristics weighted figure of merit (FoM). Images of a CDMAM contrast-detail phantom were adapted to appear as if acquired using the same four detectors as the clinical images. The resultant threshold gold thicknesses were compared to the FoMs using a linear regression model and an F-test was used to find if the gradient of the relationship was significantly non-zero.ResultsThe detectors with the best image quality measurement also had the highest FoM values. The gradient of the inverse relationship between FoMs and threshold gold thickness for the 0.25 mm diameter disk was significantly different from zero for calcification clusters (p = 0.027), but not for non-calcification lesions (p = 0.11). Systems performing just above the minimum image quality level set in the European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis resulted in reduced cancer detection rates compared to systems performing at the achievable level.ConclusionsThe clinical effectiveness of mammography for the task of detecting calcification clusters was found to be linked to image quality assessment using the CDMAM phantom. The European Guidelines should be reviewed as the current minimum image quality standards may be too low.  相似文献   

11.
IntroductionNanochambers present some advantages in terms of energy independence and absolute dose measurement for small field dosimetry in the SBRT scenario. Characterization of a micro-chamber prototype was carried out both under flattened and flattening-filter-free (FFF) beams with particular focus on stem effect.MethodsThe study included characterization of leakage and stem effects, dose rate and dose per pulse dependence, measurement of profiles, and percentage depth doses (PDDs). Ion collection efficiency and polarity effects were measured and evaluated against field size and dose per pulse. The 6_MV, 6_MV_FFF and 10_MV FFF beams of a Varian EDGE were used. Output factors were measured for field sizes ranging from 0.8 × 0.8 cm2 to 20 × 20 cm2 and were compared with other detectors.ResultsThe 2 mm diameter of this chamber guarantees a high spatial resolution with low penumbra values. In orthogonal configuration a strong stem (and cable) effect was observed for small fields. Dose rate and dose per pulse dependence were <0.3% and 0.6% respectively for the whole range of considered values. The Nanochamber exhibits a field size (FS) dependence of the polarity correction >2%. The OF values were compared with other small field detectors showing a good agreement for field sizes >2 × 2 cm2. The large field over-response was corrected applying kpol(FS).ConclusionsNanochamber is an interesting option for small field measurements. The spherical shape of the active volume is an advantage in terms of reduced angular dependence. An interesting feature of the Nanochamber is its beam quality independence and, as a future development, the possibility to use it for small field absolute dosimetry.  相似文献   

12.
AimThe purpose of this study was to investigate the crosstalk effects between adjacent pixels in a thin silicon detector with 50 um thickness.BackgroundThere are some limitations in the applications of detectors in hadron therapy. So it is necessary to have a detector with concurrent excellent time and resolution. In this work, the GEANT4 toolkit was applied to estimate the best value for energy cutoff in the thin silicon detector in order to optimize the detector.Materials and MethodsGEANT4 toolkit was applied to simulate the transport and interactions of particles. Calculations were performed for a thin silicon detector (2 cm × 2 cm×0.005 cm) irradiated by proton and carbon ion beams. A two-dimensional array of silicon pixels in the x-y plane with 100 um × 100 um × 50 um dimensions build the whole detector. In the end, the ROOT package is used to interpret and analyze the resultsResultsIt is seen that by the presence of energy cutoff, pixels with small deposited energy are ignored. The best values for energy cutoff are 0.01 MeV and 0.7 MeV for proton and carbon ion beams, respectively. By applying these energy cutoff values, efficiency and purity values are maximized and also minimum output errors are achieved.ConclusionsThe results are reasonable, good and useful to optimize the geometry of future silicon detectors in order to be used as beam monitoring in hadron therapy applications.  相似文献   

13.
PurposeHigh precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans.Methods and materialPreliminary evaluation consisted of beam profile validation and analysis of source–detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference  2%, distance-to-agreement  2 mm, pass-rate  90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1 mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions.ResultsThe 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10 cm source–detector-distance change, but remains within 1% for the clinically relevant source–detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1 mm distance-to-agreement criterion while 2 mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria.ConclusionWe demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source–detector-distance response.  相似文献   

14.
AimThe aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room.BackgroundRadiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation.Materials and MethodsAn 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker.ResultsThe results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step.ConclusionDesigning the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time.  相似文献   

15.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

16.
PurposeExternal dosimetry audits give confidence in the safe and accurate delivery of radiotherapy. The RTTQA group have performed an on-site audit programme for trial recruiting centres, who have recently implemented static or rotational IMRT, and those with major changes to planning or delivery systems.MethodsMeasurements of reference beam output were performed by the host centre, and by the auditor using independent equipment. Verification of clinical plans was performed using the ArcCheck helical diode array.ResultsA total of 54 measurement sessions were performed between May 2014 and June 2016 at 28 UK institutions, reflecting the different combinations of planning and delivery systems used at each institution. Average ratio of measured output between auditor and host was 1.002 ± 0.006. Average point dose agreement for clinical plans was −0.3 ± 1.8%. Average (and 95% lower confidence intervals) of gamma pass rates at 2%/2 mm, 3%/2 mm and 3%/3 mm respectively were: 92% (80%), 96% (90%) and 98% (94%). Moderately significant differences were seen between fixed gantry angle and rotational IMRT, and between combination of planning systems and linac manufacturer, but not between anatomical treatment site or beam energy.ConclusionAn external audit programme has been implemented for universal and efficient credentialing of IMRT treatments in clinical trials. Good agreement was found between measured and expected doses, with few outliers, leading to a simple table of optimal and mandatory tolerances for approval of dosimetry audit results. Feedback was given to some centres leading to improved clinical practice.  相似文献   

17.
PurposeProton therapy with Pencil Beam Scanning (PBS) has the potential to improve radiotherapy treatments. Unfortunately, its promises are jeopardized by the sensitivity of the dose distributions to uncertainties, including dose calculation accuracy in inhomogeneous media. Monte Carlo dose engines (MC) are expected to handle heterogeneities better than analytical algorithms like the pencil-beam convolution algorithm (PBA). In this study, an experimental phantom has been devised to maximize the effect of heterogeneities and to quantify the capability of several dose engines (MC and PBA) to handle these.MethodsAn inhomogeneous phantom made of water surrounding a long insert of bone tissue substitute (1 × 10 × 10 cm3) was irradiated with a mono-energetic PBS field (10 × 10 cm2). A 2D ion chamber array (MatriXX, IBA Dosimetry GmbH) lied right behind the bone. The beam energy was such that the expected range of the protons exceeded the detector position in water and did not attain it in bone. The measurement was compared to the following engines: Geant4.9.5, PENH, MCsquare, as well as the MC and PBA algorithms of RayStation (RaySearch Laboratories AB).ResultsFor a γ-index criteria of 2%/2 mm, the passing rates are 93.8% for Geant4.9.5, 97.4% for PENH, 93.4% for MCsquare, 95.9% for RayStation MC, and 44.7% for PBA. The differences in γ-index passing rates between MC and RayStation PBA calculations can exceed 50%.ConclusionThe performance of dose calculation algorithms in highly inhomogeneous media was evaluated in a dedicated experiment. MC dose engines performed overall satisfactorily while large deviations were observed with PBA as expected.  相似文献   

18.
AimTo investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours.BackgroundIn the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment.Materials and methodsData were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment.ResultsThe mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes.ConclusionsMore caution and an additional safety margins are required when tracking a single fiducial marker.  相似文献   

19.
BackgroundObesity is a convincing risk factor for colorectal cancer. Genetic variants in or near FTO and MC4R are consistently associated with body mass index and other body size measures, but whether they are also associated with colorectal cancer risk is unclear.MethodsIn the discovery stage, we tested associations of 677 FTO and 323 MC4R single nucleotide polymorphisms (SNPs) 100 kb upstream and 300 kb downstream from each respective locus with risk of colorectal cancer in data from the Colon Cancer Family Registry (CCFR: 1960 cases; 1777 controls). Next, all SNPs that were nominally statistically significant (p < 0.05) in the discovery stage were included in replication analyses in data from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO: 9716 cases; 9844 controls).ResultsIn the discovery stage, 43 FTO variants and 18 MC4R variants were associated with colorectal cancer risk (p < 0.05). No SNPs remained statistically significant in the replication analysis after accounting for multiple comparisons.ConclusionWe found no evidence that individual variants in or near the obesity-related genes FTO and MC4R are associated with risk of colorectal cancer.  相似文献   

20.
Background and purposeThe objective of the study was to verify the stability of gold markers in the prostatic bed (PB) during salvage radiotherapy.Material and methodsSeven patients, diagnosed with a macroscopic nodule visible on MRI, underwent targeted MRI-guided biopsies. Three gold markers were implanted into the PB close to the relapsing nodule for CT/MRI fusion. A dose of 60 Gy was delivered using IMRT to the PB followed by a dose escalation up to 72 Gy to the macroscopic nodule. Daily anterior and left-lateral kV-images were acquired for repositioning. The coordinates of the center of each marker were measured on the two kV-images. The distance variations (Dvar) of the markers in the first session and the subsequent ones were compared.ResultsNo marker was lost during treatment. The average distance between markers was 7.8 mm. The average Dvar was 0.8 mm, in absolute value. A total of 380/528 (72%) Dvar were ⩽1 mm. A Dvar greater than 2 mm was observed in 5.7% of measurements, with a maximum value of 4.8 mm.ConclusionsDespite the absence of the prostate, the implantation of gold markers in the PB remains feasible, with Dvar often less than 2 mm, and could be used to develop new approaches of salvage focal radiotherapy on the macroscopic relapse after prostatectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号