首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AimTo examine the application of Statistical Process Control (SPC) and Ishikawa diagrams for retrospective evaluation of machine Quality Assurance (QA) performance in radiotherapyBackgroundSPC is a popular method for supplementing the performance of QA techniques in healthcare. This work investigates the applicability of SPC techniques and Ishikawa charts in machine QA.Materials and MethodsSPC has been applied to recommend QA limits on the particular beam parameters using the QUICKCHECKwebline QA portable constancy check device for 6 MV and 10 MV flattened photon beams from the Elekta Versa HD linear accelerator (Linac). Four machine QA parameters – beam flatness, beam symmetry along gun target direction and left-right direction, and beam quality factor (BQF) – were selected for retrospective analysis. Shewhart charts, Exponentially Weighted Moving Average (EWMA) charts and Cumulative Sum (CUSUM) charts were obtained for each parameter. The root causes for a failure in machine QA were broken down into an Ishikawa diagram enabling the user to identify the root cause of error and rectify the problem subsequently.ResultsShewhart charts and EWMA charts applied could detect loss in control in one variable in the 6 MV beams and in all four variables in 10 MV beams. CUSUM charts detected offsets in the readings. The Ishikawa chart exhaustively included the possible errors that lead to loss of control.ConclusionSPC is proven to be effective for detection of loss in control in machine QA. The Ishikawa chart provides the set of probable root causes of machine error useful while troubleshooting.  相似文献   

2.
AimThe purpose of this study was to investigate the crosstalk effects between adjacent pixels in a thin silicon detector with 50 um thickness.BackgroundThere are some limitations in the applications of detectors in hadron therapy. So it is necessary to have a detector with concurrent excellent time and resolution. In this work, the GEANT4 toolkit was applied to estimate the best value for energy cutoff in the thin silicon detector in order to optimize the detector.Materials and MethodsGEANT4 toolkit was applied to simulate the transport and interactions of particles. Calculations were performed for a thin silicon detector (2 cm × 2 cm×0.005 cm) irradiated by proton and carbon ion beams. A two-dimensional array of silicon pixels in the x-y plane with 100 um × 100 um × 50 um dimensions build the whole detector. In the end, the ROOT package is used to interpret and analyze the resultsResultsIt is seen that by the presence of energy cutoff, pixels with small deposited energy are ignored. The best values for energy cutoff are 0.01 MeV and 0.7 MeV for proton and carbon ion beams, respectively. By applying these energy cutoff values, efficiency and purity values are maximized and also minimum output errors are achieved.ConclusionsThe results are reasonable, good and useful to optimize the geometry of future silicon detectors in order to be used as beam monitoring in hadron therapy applications.  相似文献   

3.
PurposeThe aim of this work was the commissioning of delivery procedures for the treatment of moving targets in scanning pencil beam hadrontherapy.MethodsEBT3 films fixed to the Anzai Respiratory Phantom were exposed to carbon ion scanned homogeneous fields (E = 332 MeV/u). To evaluate the interplay effect, field size and flatness for 3 different scenarios were compared to static condition: gated irradiation or repainting alone and combination of both. Respiratory signal was provided by Anzai pressure sensor or optical tracking system (OTS). End-exhale phase and 1 s gating window were chosen (2.5 mm residual motion). Dose measurements were performed using a PinPoint ionization chamber inserted into the Brainlab ET Gating Phantom. A sub-set of tests was also performed using proton beams.ResultsThe combination of gating technique and repainting (N = 5) showed excellent results (6.1% vs 4.3% flatness, identical field size and dose deviation within 1.3%). Treatment delivery time was acceptable. Dose homogeneity for gated irradiation alone was poor. Both Anzai sensor and OTS appeared suitable for providing respiratory signal. Comparisons between protons and carbon ions showed that larger beam spot sizes represent more favorable condition for minimizing motion effect.ConclusionResults of measurements performed on different phantoms showed that the combination of gating and layered repainting is suitable to treat moving targets using scanning ion beams. Abdominal compression using thermoplastic masks, together with multi-field planning approach and multi-fractionation, have also been assessed as additional strategies to mitigate the effect of patient respiration in the clinical practice.  相似文献   

4.
PurposeTo investigate and improve the domestic standard of radiation therapy in the Republic of Korea.MethodsOn-site audits were performed for 13 institutions in the Republic of Korea. Six items were investigated by on-site visits of each radiation therapy institution, including collimator, gantry, and couch rotation isocenter check; coincidence between light and radiation fields; photon beam flatness and symmetry; electron beam flatness and symmetry; physical wedge transmission factors; and photon beam and electron beam outputs.ResultsThe average deviations of mechanical collimator, gantry, and couch rotation isocenter were less than 1 mm. Those of radiation isocenter were also less than 1 mm. The average difference between light and radiation fields was 0.9 ± 0.6 mm for the field size of 20 cm × 20 cm. The average values of flatness and symmetry of the photon beams were 2.9% ± 0.6% and 1.1% ± 0.7%, respectively. Those of electron beams were 2.5% ± 0.7% and 0.6% ± 1.0%, respectively. Every institutions showed wedge transmission factor deviations less than 2% except one institution. The output deviations of both photon and electron beams were less than ±3% for every institution.ConclusionsThrough the on-site audit program, we could effectively detect an inappropriately operating linacs and provide some recommendations. The standard of radiation therapy in Korea is expected to improve through such on-site audits.  相似文献   

5.
The purpose of this study was to evaluate the suitability of the Daily QA 3 (Sun Nuclear Corporation, Melbourne, USA) device as a safe quality assurance device for control of machine specific parameters, such as linear accelerator output, beam quality and beam flatness and symmetry. Measurements were performed using three Varian 2300iX linear accelerators. The suitability of Daily QA 3 as a device for quality control of linear accelerator parameters was investigated for both 6 and 10 MV photons and 6, 9, 12, 15 and 18 MeV electrons. Measurements of machine specific using the Daily QA 3 device were compared to corresponding measurements using a simpler constancy meter, Farmer chamber and plane parallel ionisation chamber in a water tank. The Daily QA 3 device showed a linear dose response making it a suitable device for detection of output variations during routine measurements. It was noted that over estimations of variations compared with Farmer chamber readings were seen if the Daily QA 3 wasn’t calibrated for output and sensitivity on a regular eight to ten monthly basis. Temperature-pressure correction factors calculated by Daily QA 3 also contributed towards larger short term variations seen in output measurements. Energy, symmetry and flatness variations detected by Daily QA 3 were consistent with measurements performed in water tank using a parallel plate chamber. It was concluded that the Daily QA 3 device is suitable for routine daily and fortnightly quality assurance of linear accelerator beam parameters however a regular eight-ten monthly dose and detector array calibration will improve error detection capabilities of the device.  相似文献   

6.
Irradiating a tumor bed with boost dose after whole breast irradiation helps reducing the probability of local recurrence. However, the success of electron beam treatment with a small area aiming to cover a superficial lesion is a dual challenge as it requires an adequate dosimetry beside a double check for dose coverage with an estimation of various combined uncertainty of tumor location and losing lateral electron equilibrium within small field dimensions.Aim of workthis work aims to measure the electron beam fluence within different field dimensions and the deviation from measurement performed in standard square electron applicator beam flatness and symmetry, then to calculate the average range of the correction factor required to overcome the loss of lateral electron equilibrium.Material and methodthe electron beam used in this work generated from the linear accelerator model ELEKTA Precise and dosimetry system used were a pair of PTW Pin Point ion chambers for electron beam dosimetry at standard conditions and assessment of beam quality at a reference depth of measurement, with an automatic water phantom, then a Roos ion chamber was used for absolute dose measurement, and PTW 2Darray to investigate the beam fluence of four applicators 6, 10, 14 and 20 cm2 and 4 rectangular cutouts 6 × 14, 8 × 14, 6 × 17 and 8 × 17 cm2, the second part was clinical application which was performed in a precise treatment planning system and examined boost dose after whole breast irradiation.Resultsrevealed that lower energy (6MeV and 8MeV) showed the loss of lateral electron equilibrium and deviation from measurements of a standard applicator more than the high energy (15 MeV) which indicated that the treatment of superficial dose with 6MeV required higher monitor unit to allow for the loss of lateral electron equilibrium and higher margin as well.  相似文献   

7.
PurposeIntraoperative radiation therapy (IORT) using electron beam is commonly done by mobile dedicated linacs that have a variable range of electron energies. This paper focuses on the evaluation of the EBT2 film response in the green and red colour channels for IORT quality assurance (QA).MethodsThe calibration of the EBT2 films was done in two ranges; 0–8 Gy for machine QA by red channel and 8–24 Gy for patient-specific QA by green channel analysis. Irradiation of calibration films and relative dosimetries were performed in a water phantom. To evaluate the accuracy of the film response in relative dosimetry, gamma analysis was used to compare the results of the Monte Carlo simulation and ionometric dosimetry. Ten patients with early stage breast cancer were selected for in-vivo dosimetry using the green channel of the EBT2 film.ResultsThe calibration curves were obtained by linear fitting of the green channel and a third-order polynomial function in the red channel (R2 = 0.99). The total dose uncertainty was up to 4.2% and 4.7% for the red and green channels, respectively. There was a good agreement between the relative dosimetries of films by the red channel, Monte Carlo simulations and ionometric values. The mean dose difference of the in-vivo dosimetry by green channel of this film and the expected values was about 1.98% ± 0.75.ConclusionThe results of this study showed that EBT2 film can be considered as an appropriate tool for machine and patient-specific QA in IORT.  相似文献   

8.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

9.
AimThe aim of the investigation was to determine the undesirable dose coming from neutrons produced in reactions (p,n) in irradiated tissues represented by water.BackgroundProduction of neutrons in the system of beam collimators and in irradiated tissues is the undesirable phenomenon related to the application of protons in radiotherapy. It makes that proton beams are contaminated by neutrons and patients receive the undesirable neutron dose.Materials and methodsThe investigation was based on the Monte Carlo simulations (GEANT4 code). The calculations were performed for five energies of protons: 50 MeV, 55 MeV, 60 MeV, 65 MeV and 75 MeV. The neutron doses were calculated on the basis of the neutron fluence and neutron energy spectra derived from simulations and by means of the neutron fluence–dose conversion coefficients taken from the ICRP dosimetry protocol no. 74 for the antero-posterior irradiation geometry.ResultsThe obtained neutron doses are much less than the proton ones. They do not exceed 0.1%, 0.4%, 0.5%, 0.6% and 0.7% of the total dose at a given depth for the primary protons with energy of 50 MeV, 55 MeV, 60 MeV, 65 MeV and 70 MeV, respectively.ConclusionsThe neutron production takes place mainly along the central axis of the beam. The maximum neutron dose appears at about a half of the depth of the maximum proton dose (Bragg peak), i.e. in the volume of a healthy tissue. The doses of neutrons produced in the irradiated medium (water) are about two orders of magnitude less than the proton doses for the considered range of energy of protons.  相似文献   

10.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

11.
PurposeTo evaluate the flat-panel detector quenching effect and clinical usability of a flat-panel based compact QA device for PBS daily constancy measurements.Materials & MethodThe QA device, named Sphinx Compact, is composed of a 20x20 cm2 flat-panel imager mounted on a portable frame with removable plastic modules for constancy checks of proton energy (100 MeV, 150 MeV, 200 MeV), Spread-Out-Bragg-Peak (SOBP) profile, and machine output. The potential quenching effect of the flat-panel detector was evaluated. Daily PBS QA tests of X-ray/proton isocenter coincidence, the constancy of proton spot position and sigma as well as the energy of pristine proton beam, and the flatness of SOBP proton beam through the 'transformed' profile were performed and analyzed. Furthermore, the sensitivity of detecting energy changes of pristine proton beam was also evaluated.ResultsThe quenching effect was observed at depths near the pristine peak regions. The flat-panel measured range of the distal 80% is within 0.9 mm to the defined ranges of the delivered proton beams. X-ray/proton isocenter coincidence tests demonstrated maximum mismatch of 0.3 mm between the two isocenters. The device can detect 0.1 mm change of spot position and 0.1 MeV energy changes of pristine proton beams. The measured transformed SOBP beam profile through the wedge module rendered as flat.ConclusionsEven though the flat-panel detector exhibited quenching effect at the Bragg peak region, the proton range can still be accurately measured. The device can fulfill the requirements of the daily QA tests recommended by the AAPM TG224 Report.  相似文献   

12.
PurposeProton therapy with Pencil Beam Scanning (PBS) has the potential to improve radiotherapy treatments. Unfortunately, its promises are jeopardized by the sensitivity of the dose distributions to uncertainties, including dose calculation accuracy in inhomogeneous media. Monte Carlo dose engines (MC) are expected to handle heterogeneities better than analytical algorithms like the pencil-beam convolution algorithm (PBA). In this study, an experimental phantom has been devised to maximize the effect of heterogeneities and to quantify the capability of several dose engines (MC and PBA) to handle these.MethodsAn inhomogeneous phantom made of water surrounding a long insert of bone tissue substitute (1 × 10 × 10 cm3) was irradiated with a mono-energetic PBS field (10 × 10 cm2). A 2D ion chamber array (MatriXX, IBA Dosimetry GmbH) lied right behind the bone. The beam energy was such that the expected range of the protons exceeded the detector position in water and did not attain it in bone. The measurement was compared to the following engines: Geant4.9.5, PENH, MCsquare, as well as the MC and PBA algorithms of RayStation (RaySearch Laboratories AB).ResultsFor a γ-index criteria of 2%/2 mm, the passing rates are 93.8% for Geant4.9.5, 97.4% for PENH, 93.4% for MCsquare, 95.9% for RayStation MC, and 44.7% for PBA. The differences in γ-index passing rates between MC and RayStation PBA calculations can exceed 50%.ConclusionThe performance of dose calculation algorithms in highly inhomogeneous media was evaluated in a dedicated experiment. MC dose engines performed overall satisfactorily while large deviations were observed with PBA as expected.  相似文献   

13.
IntroductionTo commission the Monte Carlo (MC) algorithm based model of CyberKnife robotic stereotactic system (CK) and evaluate the feasibility of patient specific QA using the ArcCHECK cylindrical 3D-array (AC) with Multiplug inserts (MP).ResultsFour configurations were used for simple beam setup and two for patient QA, replacing water equivalent inserts by lung. For twelve collimators (5–60 mm) in simple setup, mean (SD) differences between MC and RayTracing algorithm (RT) of the number of points failing the 3%/1 mm gamma criteria were 1(1), 1(3), 1(2) and 1(2) for the four MP configurations. Tracking fiducials were placed within AC for patient QA. Single lung insert setup resulted in mean gamma-index 2%/2 mm of 90.5% (range [74.3–95.9]) and 82.3% ([66.8–94.5]) for MC and RT respectively, while 93.5% ([86.8–98.2]) and 86.2% ([68.7–95.4]) in presence of largest inhomogeneities, showing significant differences (p < 0.05).DiscussionAfter evaluating the potential effects, 1.12 g/cc PMMA and 0.09 g/cc lung material assignment showed the best results. Overall, MC-based model showed superior results compared to RT for simple and patient specific testing, using a 2%/2 mm criteria. Results are comparable with other reported commissionings for flattening filter free (FFF) delivery. Further improvement of MC calculation might be challenging as Multiplan has limited material library.ConclusionsThe AC with Multiplug allowed for comprehensive commissioning of CyberKnife MC algorithm and is useful for patient specific QA for stereotactic body radiation therapy. MC calculation accuracy might be limited due to Multiplan’s insufficient material library; still results are comparable with other reported commissioning measurements using FFF beams.  相似文献   

14.
PurposeThe aim of the study was a multicenter evaluation of MLC&jaws-defined small field output factors (OF) for different linear accelerator manufacturers and for different beam energies using the latest synthetic single crystal diamond detector commercially available. The feasibility of providing an experimental OF data set, useful for on-site measurements validation, was also evaluated.MethodsThis work was performed in the framework of the Italian Association of Medical Physics (AIFM) SBRT working group. The project was subdivided in two phases: in the first phase each center measured OFs using their own routine detector for nominal field sizes ranging from 10 × 10 cm2 to 0.6 × 0.6 cm2. In the second phase, the measurements were repeated in all centers using the PTW 60019 microDiamond detector.ResultsThe project enrolled 30 Italian centers. Micro-ion chambers and silicon diodes were used for OF measurements in 24 and 6 centers respectively. Gafchromic films and TLDs were used for very small field OFs in 3 and 1 centers. Regarding the measurements performed with the user’s detectors, OF standard deviations (SD) for field sizes down to 2 × 2 cm2 were in all cases <2.7%. In the second phase, a reduction of around 50% of the SD was obtained using the microDiamond detector.ConclusionsThe measured values presented in this multicenter study provide a consistent dataset for OFs that could be a useful tool for improving dosimetric procedures in centers. The microDiamond data present a small variation among the centers confirming that this detector can contribute to improve overall accuracy in radiotherapy.  相似文献   

15.
PurposeTo investigate the degree of 18 and 22 MeV electron beam dose perturbations caused by unilateral hip titanium (Ti) prosthesis.MethodsMeasurements were acquired using Gafchromic EBT2 film in a novel pelvic phantom made out of Nylon-12 slices in which a Ti-prosthesis is embedded. Dose perturbations were measured and compared using depth doses for 8 × 8, 10 × 10 and 11 × 11 cm2 applicator-defined field sizes at 95 cm source-surface-distance (SSD). Comparisons were also made between film data at 100 cm SSD for a 10 × 10 cm2 field and dose calculations made on CMS XiO treatment planning system utilizing the pencil beam algorithm. The extent of dose deviations caused by the Ti prosthesis based on film data was quantified through the dose enhancement factor (DEF), defined as the ratio of the dose influenced by the prosthesis and the unchanged beam.ResultsAt the interface between Nylon-12 and the Ti implant on the prosthesis entrance side, the dose increased to values of 21 ± 1% and 23 ± 1% for 18 and 22 MeV electron beams, respectively. DEFs increased with increasing electron energy and field size, and were found to fall off quickly with distance from the nylon-prosthesis interface. A comparison of film and XiO depth dose data for 18 and 22 MeV gave relative errors of 20% and 25%, respectively.ConclusionThis study outlines the lack of accuracy of the XiO TPS for electron planning in highly heterogeneous media. So a dosimetric error of 20–25% could influence clinical outcome.  相似文献   

16.
This study was initiated following conclusions from earlier experimental work, performed in a low-energy carbon ion beam, indicating a significant LET dependence of the response of a PTW-60019 microDiamond detector. The purpose of this paper is to present a comparison between the response of the same PTW-60019 microDiamond detector and an IBA Roos-type ionization chamber as a function of depth in a 62 MeV proton beam. Even though proton beams are considered as low linear energy transfer (LET) beams, the LET value increases slightly in the Bragg peak region. Contrary to the observations made in the carbon ion beam, in the 62 MeV proton beam good agreement is found between both detectors in both the plateau and the distal edge region. No significant LET dependent response of the PTW-60019 microDiamond detector is observed consistent with other findings for proton beams in the literature, despite this particular detector exhibiting a substantial LET dependence in a carbon ion beam.  相似文献   

17.
Proton radiography is a novel imaging modality that allows direct measurement of the proton energy loss in various tissues. Currently, due to the conversion of so-called Hounsfield units from X-ray Computed Tomography (CT) into relative proton stopping powers (RPSP), the uncertainties of RPSP are 3–5% or higher, which need to be minimized down to 1% to make the proton treatment plans more accurate.In this work, we simulated a proton radiography system, with position-sensitive detectors (PSDs) and a residual energy detector (RED). The simulations were built using Geant4, a Monte Carlo simulation toolkit. A phantom, consisting of several materials was placed between the PSDs of various Water Equivalent Thicknesses (WET), corresponding to an ideal detector, a gaseous detector, silicon and plastic scintillator detectors. The energy loss radiograph and the scattering angle distributions of the protons were studied for proton beam energies of 150 MeV, 190 MeV and 230 MeV. To improve the image quality deteriorated by the multiple Coulomb scattering (MCS), protons with small angles were selected. Two ways of calculating a scattering angle were considered using the proton’s direction and position.A scattering angle cut of 8.7 mrad was applied giving an optimal balance between quality and efficiency of the radiographic image. For the three proton beam energies, the number of protons used in image reconstruction with the direction method was half the number of protons kept using the position method.  相似文献   

18.
BackgroundHigh-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear.AimThe aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers.Materials and methodsThe measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy.ResultsThe fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ~106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator.ConclusionThe thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from the simple capture reaction (n,γ) (from minutes to hours) are long enough to accumulate radioactivity of components of the accelerator head. The radiation emitted by induced radioisotopes causes the additional doses to staff operating the accelerators.  相似文献   

19.
PurposeBoron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is 13C(d,n)14N. The aim of this work is to evaluate the therapeutic capabilities of the neutron beam produced by this reaction, through a 30 mA beam of deuterons of 1.45 MeV.MethodsA Beam Shaping Assembly design was computationally optimized. Depth dose profiles in a Snyder head phantom were simulated with the MCNP code for a number of BSA configurations. In order to optimize the treatment capabilities, the BSA configuration was determined as the one that allows maximizing both the tumor dose and the penetration depth while keeping doses to healthy tissues under the tolerance limits.ResultsSignificant doses to tumor tissues were achieved up to ∼6 cm in depth. Peak doses up to 57 Gy-Eq can be delivered in a fractionated scheme of 2 irradiations of approximately 1 h each. In a single 1 h irradiation, lower but still acceptable doses to tumor are also feasible.ConclusionsTreatment capabilities obtained here are comparable to those achieved with other accelerator-based neutron sources, making of the 13C(d,n)14N reaction a realistic option for producing therapeutic neutron beams through a low-energy particle accelerator.  相似文献   

20.
AimThe investigation of the irradiation time calculation accuracy of the GGPB algorithm used for IORT.BackgroundConventionally, breast conserving therapy consists of breast conserving surgery followed by postoperative whole breast irradiation and boost. The use of intraoperative radiotherapy (IORT) enables the boost to be delivered already during the surgery. In this case, the treatment dose for IORT can be calculated by use of General Gaussian Pencil Beam (GGPB) algorithm, which is implemented in TPS Eclipse.Materials and methodsPDDs and OFs for electron beams from Mobetron and all available applicators were measured in order to configure the GGPB algorithm. Afterwards, the irradiation times for the prescribed dose of 3 Gy were calculated by means of it. The results of calculations were verified in the water phantom using the Marcus ionization chamber.ResultsThe results differed between energies. For 6 MeV the irradiation times calculated by the GGPB algorithm were correct, for the energy of 9 MeV they were too small and for the energy of 4 MeV they were too large for applicators with smaller diameters, while acceptable for the remaining ones.ConclusionThe GGPB algorithm can be used in intraoperative radiotherapy for energy and applicator sets for which no significant difference between the measured and the prescribed dose was obtained. For the rest of energy-applicator sets the configuration should be verified and possibly repeated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号