首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Process Biochemistry》2010,45(2):147-152
A highly active recombinant whole-cell biocatalyst, Escherichia coli pETAB2/pG-KJE1, was developed for the efficient production of (S)-styrene oxide from styrene. The recombinant E. coli overexpressed styAB the genes of styrene monooxygenase of Pseudomonas putida SN1 and coexpressed the genes encoding chaperones (i.e., GroEL–GroES and DnaK–DnaJ–GrpE). The styrene monooxygenases were produced to ca. 40% of the total soluble proteins, enabling the whole-cell activity of the recombinant of 180 U/g CDW. The high StyAB activity in turn appeared to direct cofactors and molecular oxygen to styrene epoxidation. The product yield on energy source (i.e., glucose) reached ca. 40%. In addition, biotransformation in an organic/aqueous two-liquid phase system allowed the product to accumulate to 400 mM in the organic phase within 6 h, resulting in an average specific and volumetric productivity of 6.4 mmol/g dry cells/h (106 U/g dry cells) and 67 mM/h (1110 U/Laq), respectively, under mild reaction conditions. These results indicated that the high productivity and the high product yield on energy source were driven by the high enzyme activity. Therefore, it was concluded that oxygenase activity of whole-cell biocatalysts is one of the critical factors to determine their catalytic performance.  相似文献   

3.
The present studies were conducted to investigate the difference response of dermal fibroblasts to heat stress in Tharparkar and Karan-Fries cattle. Skin is the most important environmental interface providing a protective envelope to animals. In skin, dermal fibroblasts are the most regular cell constituent of dermis that is crucial for temperature homeostasis. The study aimed to examine the reactive oxygen species (ROS) formation, cytotoxicity (%) and heat shock protein 70 (HSP70) genes expression in dermal fibroblast of Tharparkar and Karan-Fries cattle and to assess whether resistance of dermal fibroblast to heat stress is breed specific. Dermal fibroblasts from ear pinna of Tharparkar and Karan-Fries cattle were exposed at 25 °C, 37 °C, 40 °C and 44 °C for 3 h to measure the ROS, cytotoxicity (%) and HSP 70 (HSPA1A, HSPA2 and HSPA8) genes’ expression. The results showed that ROS formation at low temperature (25 °C) decreased in both breeds as compared to control (37 °C) and the differences were significant (P<0.0001). Heat stress at 40 °C did not increase ROS formation significantly in Tharparkar but increased significantly (P<0.001) in Karan-Fries cattle. The overall cytotoxicity (%) was also found to be significantly different (P<0.001) between Tharparkar and Karan-Fries cattle, and on exposure to different temperatures (P<0.001). The cytotoxicity (%) in dermal fibroblast cells of Karan-fries cows was more than Tharparkar. The expression studies indicated that all HSP70 genes (HSPA8, HSPA1A and HSPA2) were up-regulated at different temperatures in both breeds. In Tharparkar, the relative mRNA expression of HSPA8 gene was higher but HSPA1A and HSPA2 genes were low as compared to Karan-Fries cattle. At 40 and 44 °C, the relative expressions of inducible HSP 70 genes (HSPA1A and HSPA2) were higher in Karan-Fries than Tharparkar. In summary, dermal fibroblast resistance to heat shock differed between breeds. Dermal fibroblasts of Tharparkar were observed to be more heat tolerant than crossbred Karan-Fries cattle. The study concludes that zebu cattle (Tharparkar) dermal fibroblasts are more adapted to tropical climatic condition than crossbreed cattle (Karan-Fries). Differences exist in dermal fibroblasts of heat adapted and non-adapted cattle.  相似文献   

4.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

5.
The capability of Corynebacterium glutamicum for glucose-based synthesis of itaconate was explored, which can serve as building block for production of polymers, chemicals, and fuels. C. glutamicum was highly tolerant to itaconate and did not metabolize it. Expression of the Aspergillus terreus CAD1 gene encoding cis-aconitate decarboxylase (CAD) in strain ATCC13032 led to the production of 1.4 mM itaconate in the stationary growth phase. Fusion of CAD with the Escherichia coli maltose-binding protein increased its activity and the itaconate titer more than two-fold. Nitrogen-limited growth conditions boosted CAD activity and itaconate titer about 10-fold to values of 1440 mU mg−1 and 30 mM. Reduction of isocitrate dehydrogenase activity via exchange of the ATG start codon to GTG or TTG resulted in maximal itaconate titers of 60 mM (7.8 g l−1), a molar yield of 0.4 mol mol−1, and a volumetric productivity of 2.1 mmol l−1 h−1.  相似文献   

6.
《Process Biochemistry》2010,45(3):346-354
The gene coding for the intracellular organic solvent-tolerant lipase of Pseudomonas aeruginosa strain S5 was isolated from a genomic DNA library and cloned into pRSET. The cloned sequence included two open reading frames (ORF) of 1575 bp for the first ORF (ORF1), and 582 bp for the second ORF (ORF2). The ORF2, known as chaperone, plays an important role in the expression of the S5 gene. The ORF2 is located downstream of lipase gene, and functions as the act gene for ORF1. The conserved pentapeptide, Gly-X-Ser-X-Gly, is located in the ORF1. A sequence coding for a catalytic triad that resembles that of a serine protease, consisting of serine, histidine, and aspartic acid or glutamic acid residues, was present in the lipase gene. Expression of the S5 lipase gene in E. coli resulted in a 100-fold increase in enzyme activity 9 h after induction with 0.75 mM IPTG. The recombinant protein revealed a size of 60 kDa on SDS-PAGE. The Lip S5 gene was stable in the presence of 25% (v/v) n-dodecane and n-tetradecane after 2 h incubation at 37 °C.  相似文献   

7.
8.
NS5 is the largest and most conserved protein among the four dengue virus (DENV) serotypes. It has been the target of interest for antiviral drug development due to its major role in replication. NS5 consists of two domains, the N-terminal methyltransferase domain and C-terminal catalytic RNA-dependent RNA polymerase (RdRp) domain. It is an unstable protein and is prone to inactivation upon prolonged incubation at room temperature, thus affecting the inhibitor screening assays. In the current study, we expressed and purified DENV RdRp alone in Esherichia coli (E. coli) cells. The N-terminally His-tagged construct of DENV RdRp was transformed into E. coli expression strain BL-21 (DE3) pLysS cells. Protein expression was induced with isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4 mM. The induced cultures were then grown for 20 h at 18 °C and cells were harvested by centrifugation at 6000 x g for 15 min at 4 °C. The recombinant protein was purified using HisTrap affinity column (Ni-NTA) and then the sample was subjected to size exclusion chromatography, which successfully removed the degradation product obtained during the previous purification step. The in vitro polymerase activity of RdRp was successfully demonstrated using homopolymeric polycytidylic acid (poly(rC)) RNA template. This study describes the high level production of enzymatically active DENV RdRp protein which can be used to develop assays for testing large number of compounds in a high-throughput manner. RdRp has the de novo initiation activity and the in vitro polymerase assays for the protein provide a platform for highly robust and efficient antiviral compound screening systems.  相似文献   

9.
The basal L1 medium was found to be unsatisfactory for culturing the red tide dinoflagellate Protoceratium reticulatum at a high growth rate and biomass yield. The L1 medium enhanced with phosphate to a total concentration of 217 μM supported the highest attainable growth rate and biomass yield. Once the phosphate concentration exceeded 6× L1, phosphate inhibited the dinoflagellate growth and negatively affected cell viability. At the optimal phosphate concentration of 217 μM, an increase in nitrate concentration over the range of 882–8824 μM, did not affect cell growth and yield. Nitrate did not inhibit growth at any of the concentrations used. Clearly, the basal nitrate level in L1 is sufficient for effectively culturing P. reticulatum. At the ranges of phosphate and nitrate concentrations tested, cell volume was not sensitive to the concentration of nutrients but the concentration of phosphate affected both the specific cell number and cell volume growth rates. Elevated levels of nutrients supported their intracellular accumulation. Cell-specific production of yessotoxin was not influenced by concentration of phosphate in the culture medium, but elevated (>1764 μM) nitrate concentration did enhance the yessotoxin level. Phosphate concentration that maximized biomass yield also maximized volumetric production of yessotoxin in the culture broth.  相似文献   

10.
Chicken anemia virus (CAV) is an anemia agent of breeder and young chicks. This virus is the cause of economic losses across the chicken industry worldwide as a consequence of severe anemia and immunodeficiency among the birds. Two genes of CAV encoding the VP1 and VP2 proteins were cloned and expressed in Escherichia coli BL21 (DE3). A Western blot assay using His-tag antiserum was used to assess the expression level of the CAV viral proteins in E. coli. The results demonstrated that only full-length VP2 can be successfully expressed in E. coli, but not full-length VP1. A serial of N-terminus deletions of the VP1 protein, VP1Nd30, VP1Nd60 and VP1 Nd129, were created using PCR in order to improve VP1 expression. The results demonstrated that all three of these recombinant VP1 mutant proteins can be expressed in E. coli. VP1Nd129 protein demonstrates the highest expression level compared to the other two proteins. The specificity of Nd129-VP1 and VP2 protein were confirmed by mass spectrometry. By comparing the expression level of VP1Nd129 and VP2 protein after the addition of IPTG, the results indicated that the VP1Nd129 protein gave a higher level of protein expression than VP2. The highest yields of VP1Nd129 and VP2 were 26.2 and 15.5 mg/L, respectively, after IPTG induction with 0.1 mM IPTG for 6 h, respectively. The identification of the optimized conditions for production of the CAV viral proteins VP1 and VP2 will allow them to be used in the future as an antigen for the development of vaccines and diagnostic tests.  相似文献   

11.
Hepatopancreatic Parvovirus (HPV) causes infection in the early stages of shrimp leading to retarded growth, ultimaltely resulting in monetary loss to the shrimp farmers. To over come this situation screening of post-larvae (PL) by immunology-based diagnostics is required. Hence, the specific gene of capsid protein for HPV was cloned into pRSET B expression vector and rHCP overexpressed with 6-histidine tagged fusion protein in Escherichia coli BL21(DE3). Immunology-based methods like Western blot, dot blot and ELISA techniques were employed to detect HPV in infected samples using the antiserum raised in rabbits against recombinant HCP of HPV. The dot blot assay using anti-rHCP was found to be capable of detecting HPV in HPV infected post-larvae as early as at 24 h post infection. The antiserum could detect the HPV in the infected samples at 1 ng of total protein. HPV infection estimated by ELISA using anti-HCP and pure r-HCP as a standard was found to increase gradually during the course of infection from 24 h post infection. The sensitivity of antibody-based diagnostics employed in the present study was compared with that of PCR diagnostic method to screen the post-larvae for the detection of HPV.  相似文献   

12.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   

13.
d-glucaric acid has been explored for a myriad of potential uses, including biopolymer production and cancer treatment. A biosynthetic route to produce d-glucaric acid from glucose has been constructed in Escherichia coli (Moon et al., 2009b), and analysis of the pathway revealed myo-inositol oxygenase (MIOX) to be the least active enzyme. To increase pathway productivity, we explored protein fusion tags for increased MIOX solubility and directed evolution for increased MIOX activity. An N-terminal SUMO fusion to MIOX resulted in a 75% increase in d-glucaric acid production from myo-inositol. While our directed evolution efforts did not yield an improved MIOX variant, our screen isolated a 941 bp DNA fragment whose expression led to increased myo-inositol transport and a 65% increase in d-glucaric acid production from myo-inositol. Overall, we report the production of up to 4.85 g/L of d-glucaric acid from 10.8 g/L myo-inositol in recombinant E. coli.  相似文献   

14.
To enhance laccase yield, the laccase gene from Bacillus vallismortis fmb-103 was cloned and heterologously expressed in Escherichia coli BL21 (DE3) cells. The auto-induction strategy was applied during fermentation, and the process was controlled, as follows: Cu2+ was added when the optical density at 600 nm (OD600) was 0.3, the fermentation temperature was adjusted to 16 °C when the OD600 was 0.9, and fermentation was stopped after 50 h. The yield of recombinant laccase was up to 3420 U/L, as assayed by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Recombinant laccase was purified 4.47-fold by heating for 10 min at 70 °C and dialyzing against 50–60% ammonium sulfate, retained more than 50% activity after 10 h at 70 °C, and demonstrated broad pH stability. Malachite green was efficiently degraded by recombinant laccase, especially in combination with mediators. These results provided a basis for the future application of recombinant laccase to malachite green degradation.  相似文献   

15.
A synthetic codon-optimized gene encoding human procathepsin K has been cloned in Escherichia coli using pET28a+ vector. The recombinant His-tagged fusion protein was expressed as inclusion body, solubilized in urea and purified by metal affinity chromatography. The purified protein was refolded by dilution technique, concentrated and finally purified by gel-filtration chromatography. The expressed protein was confirmed by Western blot analysis with human cathepsin K specific antibody. We have obtained 140 mg purified and refolded protein from 1 L bacterial culture which is the highest (nearly three times higher) yield reported so far for a recombinant human procathepsin K. The protease could be autocatalytically activated to mature protease at lower pH in presence of cysteine protease specific activators. The recombinant protease showed gelatinolytic and collagenolytic activities as well as activity against synthetic substrate Z-FR-AMC with a Km value of 5 ± 2.7 μM and the proteolytic activity of the enzyme could be blocked by cysteine protease inhibitors E-64, leupeptin and MMTS.  相似文献   

16.
A xylanase produced by Thermomyces lanuginosus 195 by solid state fermentation (SSF) was purified 9.3-fold from a crude koji extract, with a 7.6% final yield. The purified xylanase (with an estimated mass of 22 kDa by SDS-PAGE) retained 18% relative activity when treated for 10 min at 100 °C and approximately 90% relative activity when incubated at pH values ranging from 6 to 10. Xylanase activity in the purified preparation was significantly enhanced following treatment with manganese and potassium chlorides (p < 0.05) but significantly reduced by calcium, cobalt and iron (p < 0.05). The purified enzyme was also shown to be exclusively xylanolytic. The gene encoding xylanase activity from T. lanuginosus 195 was functionally expressed by Pichia pastoris. MALDI-ToF mass spectrometry and zymography were employed to confirm functional recombinant expression. Maximum xylanase titres were achieved following 120 h induction of the recombinant culture, yielding 26.8 U/mL. Achieving functional protein expression facilitates future efforts to optimise the cultivation conditions for heterologous xylanase production.  相似文献   

17.
Mycophenolic acid (MPA) was produced from Penicillium brevicompactum by solid-state fermentation (SSF) using pearl barley, and submerged fermentation (SmF) using mannitol. It was found that SSF was superior to SmF in terms of MPA concentration (1219 mg/L vs. 60 mg/L after 144 h fermentation), and the product yields were 6.1 mg/g pearl barley for SSF and 1.2 mg/g mannitol for SmF. The volumetric productivities were 8.5 and 0.42 mg/L h for SSF and SmF, respectively.The optimum solid substrate of SSF for MPA production was pearl barley, producing 5470 mg/kg compared with wheat bran (1601 mg/kg), oat (3717 mg/kg) and rice (2597 mg/kg). The optimum moisture content, incubation time and inoculum concentrations were 70%, 144 h and 6%, respectively. Neither the addition of mannitol or (NH4)2HPO4 nor adjustment of media pH within the range of 3–7 significantly enhanced MPA production.MPA production by SSF using a packed-bed bioreactor was performed and an increased maximum production of MPA 6.9 mg/g was achieved at 168 h incubation time. The higher volumetric productivity and concentrations makes SSF an attractive alternative to SmF for MPA production.  相似文献   

18.
19.
《Process Biochemistry》2014,49(3):490-495
Plant transient expression provides a rapid production platform for recombinant proteins but is linked with low protein yields. To test if plant-specific hydroxyproline (Hyp)-O-glycosylated peptide tags attached to a target protein can improve overall yields of recombinant protein transiently expressed in Nicotiana benthamiana, enhanced green fluorescence protein (EGFP) was expressed as a fusion with 5 or 32 tandem repeats of a serine–proline motif, designated (SP)5 or (SP)32, which is known to direct extensive Hyp-O-glycosylation in plants. EGFP containing the (SP)n motif showed enhanced yields in the order as follows: EGFP < EGFP-(SP)5  (SP)5-EGFP < (SP)32-EGFP. The EGFP equivalent yield of (SP)32-EGFP was up to 16-fold greater than that of the EGFP control. In addition, both fully glycosylated (SP)32-EGFP (∼115 kDa) and partially glycosylated (SP)32-EGFP (∼40 kDa) were detected in protein extracts of N. benthamiana. These two types of glycoforms were completely segregated between media and cells in tobacco BY-2 cell cultures.  相似文献   

20.
Cellulosimicrobium cellulans employs extracellular sialidase to selectively convert polysialogangliosides to ganglioside GM1. We cloned this novel sialidase gene (ccsia) from C. cellulans sp. 21, and overexpressed recombinant sialidase (CcSia) protein in E. coli BL21 (DE3) by high cell density fermentation. The presence of an N-terminal hexa-His tag allowed for purification using nickel affinity chromatography (2.3-fold, specific activity 41.5 U/mg). As determined by gel electrophoresis and gel filtration chromatography, the molecular weight of CcSia was found to be about 75 kDa, consistent with sequence analysis (75,271 Da). CcSia transformed polysialogangliosides GD1a, GD1b and GT1b into GM1. For this reaction, the response surface approach showed that optimal conditions in a 1-L system were 2 h incubation at 32.5 °C and pH 5.2, with substrate concentrations of 10 g/L and crude enzyme concentration 1 g/L, respectively. Under above conditions, 10 g/L of ganglioside was completely converted to the product GM1 with a yield of 52%. Our studies demonstrate CcSia could be used for industrial preparation of ganglioside GM1 by the pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号