首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the present study, genetic variation among 40 cucumber genotypes was analyzed by means of morpho-physiological traits and 21 EST-SSR markers. Diversity was observed for morpho-physiological characters like days to 50% female flowering (37–46.9, number of fruits/plant (1.33–5.80), average fruit weight (41–333), vine length (36–364), relative water content (58.5–92.7), electrolyte leakage (15.9–37.1), photosynthetic efficiency (0.40–0.75) and chlorophyll concentration index (11.1–28.6). The pair wise Jaccard similarity coefficient ranged from 0.00 to 0.27 for quantitative traits and 0.24 to 0.96 for EST-SSR markers indicating that the accessions represent genetically diverse populations. With twenty-one EST-SSR markers, polymorphism revealed among 40 cucumber genotypes, number of alleles varied 2–6 with an average 3.05. Polymorphism information content varied from 0.002 to 0.989 (mean = 0.308). The number of effective allele (Ne), expected heterozygosity (He) and unbiased expected heterozygosity (uHe) of these EST-SSRs were 1.079–1.753, 0.074–0.428 and 0.074–0.434, respectively. Same 21 EST-SSR markers transferability checked in four other Cucumis species: snapmelon (Cucumis melo var. momordica), muskmelon (Cucumis melo L.), pickling melon (Cucumis melo var. conomon) and wild muskmelon (Cucumis melo var. agrestis) with frequency of 61.9, 95.2, 76.2, and 76.2%, respectively. Present study provides useful information on variability, which can assist geneticists with desirable traits for cucumber germplasm utilization. Observed physiological parameters may assists in selection of genotype for abiotic stress tolerance also, EST-SSR markers may be useful for genetic studies in related species.  相似文献   

3.
Medieval History of the Duda’im Melon ( Cucumis melo , Cucurbitaceae). Melons, Cucumis melo, are a highly polymorphic species for fruit characteristics. The melons that are the most valued are the ones that turn sweet when ripe, including the muskmelons, cantaloupes, and casabas. Others, including the elongate adzhur, conomon, and snake melons, are consumed when immature, like cucumbers. The duda’im melons, Cucumis melo Duda’im Group, are special, as their small, spherical, thin-fleshed, insipid but beautifully maroon, dark-orange, or brown-and-yellow striped ripe fruits are valued for ornament and especially for their lush fragrance. The distinctive properties of duda’im melons are matched with special names given to them in several languages and geographical areas, which have made possible tracing of the history of these melons to mid-9th century Persia. From that region, duda’im melons diffused westward, likely facilitated by Islamic conquests, reaching North Africa and Andalusia in the 10th century.  相似文献   

4.
Despite being a highly studied model organism, most genes of the cyanobacterium Synechocystis sp. PCC 6803 encode proteins with completely unknown function. To facilitate studies of gene regulation in Synechocystis, we have developed Synergy (http://synergy.plantgenie.org), a web application integrating co-expression networks and regulatory motif analysis. Co-expression networks were inferred from publicly available microarray experiments, while regulatory motifs were identified using a phylogenetic footprinting approach. Automatically discovered motifs were shown to be enriched in the network neighborhoods of regulatory proteins much more often than in the neighborhoods of non-regulatory genes, showing that the data provide a sound starting point for studying gene regulation in Synechocystis. Concordantly, we provide several case studies demonstrating that Synergy can be used to find biologically relevant regulatory mechanisms in Synechocystis. Synergy can be used to interactively perform analyses such as gene/motif search, network visualization and motif/function enrichment. Considering the importance of Synechocystis for photosynthesis and biofuel research, we believe that Synergy will become a valuable resource to the research community.  相似文献   

5.
6.
The objectives of this research were to assess (1) the degree of Simple Sequence Repeats (SSR) DNA length polymorphism in melon (Cucumis melo L.) and other species within the Cucurbitaceae family and (2) the possibility of utilizing SSRs flanking primers from single species to other genera or species of Cucurbitaceae. Five melon (CT/GA) n SSRs were isolated from a genomic library. Two cucumber (Cucumis sativus L.) SSRs were detected through a search of DNA sequence databases, one contained a (CT)8 repeat, the other a (AT)13 repeat. The seven SSRs were used to test a diverse sample of Cucurbitaceae, including 8 melon, 11 cucumber, 5 squash, 1 pumpkin, and 3 watermelon genotypes. Five of the seven SSRs detected length polymorphism among the 8 melon genotypes. PCR amplification revealed between three and five length variants (alleles) for each SSR locus, with gene diversity values ranging from 0.53 to 0.75. Codominant segregation of the alleles among F2 progeny was demonstrated for each of the five SSR loci. Four of the seven SSRs detected polymorphism among the 11 cucumber genotypes, with gene diversity values ranging between 0.18 and 0.64. Primers specific to SSRs of C. melo and C. sativus also amplified DNA extracted from genotypes belonging to other genera of the Cucurbitaceae family.  相似文献   

7.
Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy   总被引:1,自引:0,他引:1  

Background  

Cucumis melo (melon) belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has a high intra-specific genetic variation, morphologic diversity and a small genome size (454 Mb), which make it suitable for a great variety of molecular and genetic studies. A number of genetic and genomic resources have already been developed, such as several genetic maps, BAC genomic libraries, a BAC-based physical map and EST collections. Sequence information would be invaluable to complete the picture of the melon genomic landscape, furthering our understanding of this species' evolution from its relatives and providing an important genetic tool. However, to this day there is little sequence data available, only a few melon genes and genomic regions are deposited in public databases. The development of massively parallel sequencing methods allows envisaging new strategies to obtain long fragments of genomic sequence at higher speed and lower cost than previous Sanger-based methods.  相似文献   

8.
The Plant Genetic Map Database (PlantGM) has been developed as a web-based system which provides information about genetic markers in rice (Oryza sativa) and Chinese cabbage (Brassica rapa). The database has three major parts and functions; (1) Map Search, (2) Marker Search, and (3) QTL Search. At present, the database provides characterization information for about 3258 genetic markers. It has 2800 RFLP and 112 QTL markers related to rice in addition to 321 RFLP and 25 PCR-based markers for Chinese cabbage. In addition, a genetic linkage map was also constructed by using 1,054 markers from 2,912 markers in rice.

Availability

The database is available for free at http://www.niab.go.kr/nabic/PlantGM  相似文献   

9.
10.
11.
Studies on trichomes micromorphology using Scanning Electron Microscope (SEM) were undertaken in 23 species with one variety under 13 genera of the family Cucurbitaceae (viz., Benincasa hispida (Thunb.) Cogn., Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumis melo var. agrestis Naudin, Cucumis sativus L., Diplocyclos palmatus (L.) C. Jeffrey, Edgaria dargeelingensis C.B. Clarke, Gynostemma burmanicum King ex Chakr., Gynostemma pentaphyllum (Thunb.) Makino, Gynostemma pubescens (Gagnep.) C.Y. Wu, Hemsleya dipterygia Kuang & A.M. Lu, Lagenaria siceraria (Molina) Standl., Luffa acutangula (L.) Roxb., Luffa cylindrica M. Roem., Luffa echinata Roxb., Melothria heterophylla (Lour.) Cogn., Melothria leucocarpa (Blume) Cogn., Melothria maderspatana (L.) Cogn., Sechium edule (Jacq.) Sw., Thladiantha cordifolia (Blume) Cogn., Trichosanthes cucumerina L., T. cucumerina var. anguina (L.) Haines, Trichosanthes dioica Roxb., Trichosanthes lepiniana (Naudin) Cogn. and T. tricuspidata Lour.). The trichomes in the family Cucurbitaceae vary from unicellular to multicellular, conical to elongated, smooth to ridges, with or without flattened disk at base and cyctolithic appendages, thin to thick walled, curved at apices to blunt. Trichomes micromorphology in the family Cucurbitaceae was found significant taxonomically.  相似文献   

12.

Background

Identification of DNA/Protein motifs is a crucial problem for biologists. Computational techniques could be of great help in this identification. In this direction, many computational models for motifs have been proposed in the literature.

Methods

One such important model is the motif model. In this paper we describe a motif search web tool that predominantly employs this motif model. This web tool exploits the state-of-the art algorithms for solving the motif search problem.

Results

The online tool has been helping scientists identify many unknown motifs. Many of our predictions have been successfully verified as well. We hope that this paper will expose this crucial tool to many more scientists.

Availability and requirements

Project name: PMS - Panoptic Motif Search Tool. Project home page: http://pms.engr.uconn.edu or http://motifsearch.com. Licence: PMS tools will be readily available to any scientist wishing to use it for non-commercial purposes, without restrictions. The online tool is freely available without login.  相似文献   

13.

Background  

Despite the great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in melon (Cucumis melo L.) and cucurbit species. The development of microsatellite markers will have a major impact on genetic analysis and breeding of melon, especially on the generation of marker saturated genetic maps and implementation of marker assisted breeding programs. Genomic microsatellite enriched libraries can be an efficient alternative for marker development in such species.  相似文献   

14.
Drug development from natural sources is an important and fast developing area. Natural sources (plants) have been used to cure a range of diseases for Thousands of years. Different online medicinal plant databases provide information about classifications, activities, phytochemicals and structure of phytochemicals in different formats. These databases do not cover all aspects of medicinal plants. MAPS (Medicinal plant Activities, Phytochemicals & structural database) has been constructed with uniqueness that it combines all information in one web resource and additionally provides test targets on which particular plant found to be effective with reference to the original paper as well. MAPS database is user friendly information resource, including the data of > 500 medicinal plants. This database includes phytochemical constituents, their structure in mol format, different activities possessed by the medicinal plant with the targets reported in literature.

Availability

http://www.mapsdatabase.com  相似文献   

15.
The gourd family, Cucurbitaceae, contains five vegetable crops of worldwide importance, the pumpkins and squash (Cucurbita spp.), watermelons (Citrullus lanatus), melons (Cucumis melo) and cucumbers (Cucumis sativus). Here is presented a synopsis of the origin and history of these cucurbit crops. Historical records of the use of cucurbits by people take the form of archaeobotanical finds, iconography and literature. The weight of the evidence indicates that Cucurbita spp. were first cultivated in the Americas at least 10,000 years ago, and that by 1492 ce a number of cultivar-groups of pumpkins and squash had been developed by indigenous American peoples. Watermelons were cultivated in northeastern Africa at least 4,000 years ago, first probably as a source of fresh water. Melons and cucumbers are native to Asia, probably initially cultivated for the use of the young fruits as vegetables. Melons spread to eastern Africa at an early date, but cucumbers are probably a more recent domesticate and spread westwards later, reaching Europe in early medieval times. Sequencing of cucurbit plant genomes and advances in ancient DNA research offer much promise for obtaining an improved assessment of cucurbit crop origins, specifically the genetic constitution and geographical home of ancestral source populations. Next-generation genomic sequencing, if applied to an appropriate array of archaeological cucurbit remains and modern germplasm, could contribute much to the understanding of the history and evolution under domestication of cucurbit crops.  相似文献   

16.
17.
Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip ( http://cran.r-project.org/web/packages/MiClip/index.html ), and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip) for customized analysis.  相似文献   

18.
Cucurbitacin B (CuB) and its glycoside, cucurbitacin B 2-o-β-d-glucoside (CuBg), abundantly occur in the pedicels of Cucumis melo. Compared with CuB, CuBg is not efficiently extracted from the pedicels. Furthermore, the anticancer activity of CuBg is lower than that of the aglycone. A process for CuBg biotransformation to CuB was developed for the first time. A strain of Streptomyces species that converts CuBg into CuB was isolated from an enrichment culture of C. melo pedicels. After optimization of conditions for enzyme production and biotransformation, a maximum conversion rate of 92.6 % was obtained at a CuBg concentration of 0.25 g/L. When biotransformation was performed on C. melo pedicel extracts, the CuB concentration in the extracts increased from 1.50 to 3.27 g/L. The conversion rate was almost 100 %. The developed process may be an effective biotransformation method for industrial production CuB from C. melo pedicels for pharmaceuticals.  相似文献   

19.
Melon (Cucumis melo L.) is one of the most popular and highly nutritious vegetable species within Cucurbitaceae. Because appearance is used as an important indicator of quality, the spotted to non-spotted trait associated with this product somewhat influences the buying habits of consumers. We tested a six-generation family to determine the inheritance and genetic basis of this trait. Genetic groups F1, F2, BC1P1, and BC1P2 were from a cross between “IM16559” (non-spotted) and “IM16553” (spotted). Our genetic analysis showed that the spotted to non-spotted trait was controlled by a single dominant gene that we named CmSp-1. Whole-genome resequencing-bulked segregant analysis (WG-BSA) demonstrated that this gene was located on the end of chromosome 2, in the intersections of 22,160,000 to 22,180,000 bp and 22,260,000 to 26,180,000 bp, an interval distance of 3.94 Mb. Insertion-deletion (InDel) markers designed based on WG-BSA data were used to map this gene. Using 13 InDel markers, we produced a genetic map indicating that CmSp-1 was tightly linked to markers I734-2 and I757, with genetic distances of 1.8 and 0.4 cM and an interval distance of 280.872 kb. The closest marker was I757. Testing of 107 different melon genotypes presented an accuracy of 84.11% in predicting the phenotype. By being able to locate CmSp-1 in melon, we can now use the findings to identify potential targets for further marker-assisted breeding and cloning projects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号