首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening.

Abstract

The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening.  相似文献   

2.
3.
4.
香蕉MuMADS1基因表达产物的亚细胞定位   总被引:3,自引:0,他引:3  
MuMADS1是从香蕉果实cDNA文库中筛选分离到的一个MADS—box基因.通过生物信息学分析表明,该基因编码的蛋白可能作为转录因子定位于细胞核中,而且芯片分析表明:该基因在果实成熟早期表达上调.是乙烯的上游调控因子,可能与花的发育、果实发育及成熟相关.为进一步深入研究该基因功能。构建了以绿色荧光蛋白(Green fluorescent protein.GFP)为报告基因的融合植物表达载体pCAMBIA1304 MuMADS1.利用基因枪转化法将重组载体转入洋葱表皮细胞瞬时表达.荧光显微镜检测结果表明。该基因表达产物定位于细胞核中.符合转录因子特性.  相似文献   

5.
6.
通过筛选用采后0h和48h的香蕉果实构建的果实成熟的SSH(抑制差减杂交)文库,得到一条命名为MuMADS1长度为888bp的片段。通过互联网数据库及生物信息学分析工具对香蕉MuMADS1基因及其编码蛋白进行理化性质预测、序列与结构分析和功能预测。结果表明:MuMADS1基因编码蛋白分子式为C1171H1879N351O367S7,属于亲水的不稳定蛋白;保守结构域分析含有保守的MADS盒和半保守的K-box盒;二级结构主要是以α螺旋为主;具有多种磷酸化位点和核定位信号;同源性比较发现与许多植物的花器官决定基因具有较高的相似性,推测它们可能为同源基因,具有相似的生物学功能。  相似文献   

7.
8.
香蕉一个Ⅲ类酸性几丁质酶基因与果实成熟关系的研究   总被引:2,自引:0,他引:2  
为了解Ⅲ类酸性几丁质酶基因(MaCHⅢ)与香蕉果实采后成熟过程的相互关系,对经乙烯和1-甲基环丙烯(1-MCP)处理的巴西香蕉果实采后乙烯释放量、Ⅲ类酸性几丁质酶基因(MaCHⅢ)表达以及几丁质酶活性进行了测定.结果显示:(1)乙烯催熟处理的香蕉果实,乙烯释放量比对照处理的果实提前15 d达到高峰;1-MCP处理的香蕉果实,乙烯生物合成和果实成熟明显受到了抑制.(2)外源乙烯加速了MaCHⅢ基因的下调表达和Ⅲ类酸性几丁质酶活性的下降,MaCHⅢ表达量和Ⅲ类酸性几丁质酶活性分别在采后第3天和第4天下降到最小值.(3)1-MCP处理使MaCHⅢ基因呈现上调表达,Ⅲ类酸性几丁质酶活性上升,MaCHⅢ基因表达量和Ⅲ类酸性几丁质酶活性分别在采后18 d和25 d达到高峰.研究表明,MaCHⅢ基因可能与香蕉果实采后成熟呈负相关.  相似文献   

9.
10.
Effects of Chilling Temperatures on Ethylene Binding by Banana Fruit   总被引:2,自引:0,他引:2  
Banana fruit are highly susceptible to chilling injury during low temperature storage. Experiments were conducted to compare ethylene binding during storage at chilling (3 and 8 °C) versus optimum (13 °C) temperatures. The skins of fruit stored at 3 and 8 °C gradually darkened as storage duration increased. This chilling effect was reflected in increasing membrane permeability as shown by increased relative electrolyte leakage from skin tissue. In contrast, banana fruit stored for 8 days at 13 °C showed no chilling injury symptoms. Exposure of banana fruit to the ethylene binding inhibitor 1-methylcyclopropene (1 l l-1 1-MCP) prevented ripening. However, this treatment also enhanced the chilling injury accelerated the occurrence of chilling injury-associated increased membrane permeability. 14C-ethylene release assay showed that ethylene binding by banana fruit stored at low temperature decreased with reduced storage temperature and/or prolonged storage time. Fruit exposed to 1-MCP for 12 h and then stored at 3 or 8 °C exhibited lower ethylene binding than those stored at 13 °C. Thus, chilling injury of banana fruit stored at low temperature is associated with a decrease in ethylene binding. The ability of tissue to respond to ethylene is evidently reduced, thereby resulting in failure to ripen.  相似文献   

11.
香蕉果胶裂解酶基因的克隆   总被引:7,自引:0,他引:7  
根据已经报告的香蕉果胶裂解酶基因序列,设计了特异引物,通过RT-PCR获得果胶裂解酶的cDNA,并克隆测序,与已报告的序列进行了比较,二者核苷酸序列的同源性达99.24%;推测的氨基酸序列也具有很高的同源性,达97.7%.通过RT-PCR的方法对香蕉不同组织和不同成熟度果实的果胶裂解酶基因的表达进行了研究.结果表明该基因只在果实中表达,具有组织特异性,而且只在果实的特定发育阶段表达.  相似文献   

12.
13.
14.
Abstract The role of abscisic acid (ABA) in banana fruit ripening was examined with the ethylene binding inhibitor, 1-methylcyclopropene (1-MCP). ABA (0, 10−5, 10−4, or 10−3 mol/L) was applied by vacuum infiltration into fruit. 1-MCP (1 μL/L) was applied by injecting a measured volume of stock gas into sealed glass jars containing fruit. Fruit ripening, as judged by ethylene evolution and respiration associated with color change and softening, was accelerated by 10−4 or 10−3 mol/L ABA. ABA at 10−5 mol/L had no effect. The acceleration of ripening by ABA was greater at 10−3 mol/L than at 10−4 mol/L. ABA-induced acceleration of banana fruit ripening was not observed in 1-MCP treated fruit, especially when ABA was applied after exposure to 1-MCP. Thus, ABA's promotion of ripening in intact banana fruit is at least partially mediated by ethylene. Exposure of ABA-treated fruit to 0.1 μL/L ethylene for 24 h resulted in increased ethylene production and respiration, and associated skin color change and fruit softening. Control fruit (no ABA) was unresponsive to similar ethylene treatments. The data suggest that ABA facilitates initiation and progress in the sequence of ethylene-mediated ripening events, possibly by enhancing the sensitivity to ethylene. Received 29 January 1999; accepted 16 January 2000  相似文献   

15.
16.
Plant translation elongation factor 1 alpha (EF1A) is both a protein synthesis factor and an important component of plant signal transduction, immune responses, protein trafficking, and apoptosis. However, its role in plant growth and development remains unclear. Herein, a full-length EF1A gene was isolated from banana (Musa acuminata L.) fruit and termed MaEF1A. We found that MaEF1A shared a high sequence identify with respective genes in other plants and the deduced amino acid sequence contained conserved regions of GTP-EFTU, GTP-EFTU-02, and GTP-EFTU-03, as well as two tRNA binding domains and six GTP-binding sites which represent functional domains for protein biosynthesis. MaEF1A protein is mainly localized to the nucleus. MaEF1A was constitutively expressed in different banana organs including developing fruits, and the highest expression was detected in ovary 4 stage. Arabidopsis thaliana L. (ecotype Columbia) was transformed with MaEF1A and four transgenic lines were obtained. Three transgenic lines were selected for further phenotypic analyses. Our findings indicate that overexpressed MaEF1A could greatly enhance plant height, root length, and both rhachis and silique length by promoting cell expansion and elongation. These experiments suggest an important role for MaEF1A in plant growth and development.  相似文献   

17.
Li MY  Xu BY  Liu JH  Yang XL  Zhang JB  Jia CH  Ren LC  Jin ZQ 《Plant cell reports》2012,31(2):369-378
To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号