首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External electron radiotherapy is performed using a cone or applicator to collimate the beam. However, because of a trade-off between collimation and scattering/bremsstrahlung X-ray production, applicators generate a small amount of secondary radiation (leakage). We investigate the peripheral dose outside the radiation field of a Varian-type applicator. The dose and fluence outside the radiation field were analyzed in a detailed Monte Carlo simulation. The differences between the calculation results and data measured in a water phantom in an ionization chamber were less than ±1% in regions more than 3 mm below the surface of the phantom and at the depth of dose maximum. The calculated fluence was analyzed inside and outside the radiation field on a plane just above the water phantom surface. Changing the electron energy affected the off-axis fluence distribution outside the radiation field; however, the size of the applicator had little effect on this distribution. For each energy, the distributions outside the radiation field were similar to the dose distribution at shallow depths in the water phantom. The effect of secondary electrons generation by photon transmission through the alloy making up the lowest scraper was largest in the region from the field edge to directly below the cutout and at higher beam energies. The results of the Monte Carlo simulation confirm that the peripheral dose outside the field is significantly affected by radiation scattered or transmitted from the applicator, and the effect increases with the electron energy.  相似文献   

2.
GATE/GEANT is a Monte Carlo code dedicated to nuclear medicine that allows calculation of the dose to organs of voxel phantoms. On the other hand, MIRD is a well-developed system for estimation of the dose to human organs. In this study, results obtained from GATE/GEANT using Snyder phantom are compared to published MIRD data. For this, the mathematical Snyder phantom was discretized and converted to a digital phantom of 100 × 200 × 360 voxels. The activity was considered uniformly distributed within kidneys, liver, lungs, pancreas, spleen, and adrenals. The GATE/GEANT Monte Carlo code was used to calculate the dose to the organs of the phantom from mono-energetic photons of 10, 15, 20, 30, 50, 100, 200, 500, and 1000 keV. The dose was converted into specific absorbed fraction (SAF) and the results were compared to the corresponding published MIRD data. On average, there was a good correlation (r 2>0.99) between the two series of data. However, the GATE/GEANT data were on average −0.16 ± 6.22% lower than the corresponding MIRD data for self-absorption. Self-absorption in the lungs was considerably higher in the MIRD compared to the GATE/GEANT data, for photon energies of 10–20 keV. As for cross-irradiation to other organs, the GATE/GEANT data were on average +1.5 ± 8.1% higher than the MIRD data, for photon energies of 50–1000 keV. For photon energies of 10–30 keV, the relative difference was +7.5 ± 67%. It turned out that the agreement between the GATE/GEANT and the MIRD data depended upon absolute SAF values and photon energy. For 10–30 keV photons, where the absolute SAF values were small, the uncertainty was high and the effect of cross-section prominent, and there was no agreement between the GATE/GEANT results and the MIRD data. However, for photons of 50–1,000 keV, the bias was negligible and the agreement was acceptable.  相似文献   

3.
IntroductionLow-kV IORT (Low kilovoltage intraoperative radiotherapy) using INTRABEAM machine and dedicated spherical applicators is a candidate modality for breast cancer treatment. The current study aims to quantify the RBE (relative biologic effectiveness) variations of emitted X-rays from the surface of different spherical applicators and bare probe through a hybrid Monte Carlo (MC) simulation approach.Materials and methodsA validated MC model of INTRABEAM machine and different applicator diameters, based on GEANT4 Toolkit, was employed for RBE evaluation. To doing so, scored X-ray energy spectra at the surface of each applicator diameter/bare probe were used to calculate the corresponding secondary electron energy spectra at various distances inside the water and breast tissue. Then, MCDS (Monte Carlo damage simulation) code was used to calculate the RBE values according to the calculated electron spectra.ResultsPresence of spherical applicators can increase the RBE of emitted X-rays from the bare probe by about 22.3%. In return, changing the applicator diameter has a minimal impact (about 3.2%) on RBE variation of emitted X-rays from each applicator surface. By increasing the distance from applicator surface, the RBE increments too, so that its value enhances by about 10% with moving from 2 to 10 mm distance. Calculated RBE values within the breast tissue were higher than those of water by about 4% maximum value.ConclusionBall section of spherical IORT applicators can affect the RBE value of the emitted X-rays from INTRABEAM machine. Increased RBE of breast tissue can reduce the prescribed dose for breast irradiation if INTRABEAM machine has been calibrated inside the water.  相似文献   

4.
In recent decades, eye plaques of brachytherapy have been extensively used as primary treatment as well as a complementary treatment for ocular cancer. The purpose of this study is the development of the eye plaque brachytherapy throughout a new design of eye plaque by combining the COMS plaque and the CCB BEBIG plaque loaded by IRA1-103Pd and 106Ru, respectively. A new dual-core plaque with a diameter of 20 mm was designed in the way that the BEBIG plaque with a diameter of 20 mm loaded by 106Ru plate is attached to the COMS plaque with a diameter of 20 mm loaded by 24 of IRA1-103Pd seeds. Dose calculations for the new plaque were performed by using the MCNP5 code. Dose calculations of dual-core plaque including 103Pd seeds (gamma) and 106Ru plate (beta) were separately done for the sake of MCNP constraints in gamma and beta particle transfer simultaneously. The new dual-core plaque delivers a much higher dose rate to the tumor compared with every single plaque, while the dose rate reached to healthy tissues is slightly higher than each plaque separately. Of course, this is acceptable because the treatment time reduces and subsequently the error in radiation therapy reduces.  相似文献   

5.
PurposeTo study the impact of shielding elements in the proximity of Intra-Operative Radiation Therapy (IORT) irradiation fields, and to generate graphical and quantitative information to assist radiation oncologists in the design of optimal shielding during pelvic and abdominal IORT.MethodAn IORT system was modeled with BEAMnrc and EGS++ Monte Carlo codes. The model was validated in reference conditions by gamma index analysis against an experimental data set of different beam energies, applicator diameters, and bevel angles. The reliability of the IORT model was further tested considering shielding layers inserted in the radiation beam. Further simulations were performed introducing a bone-like layer embedded in the water phantom. The dose distributions were calculated as 3D dose maps.ResultsThe analysis of the resulting 2D dose maps parallel to the clinical axis shows that the bevel angle of the applicator and its position relative to the shielding have a major influence on the dose distribution. When insufficient shielding is used, a hotspot nearby the shield appears near the surface. At greater depths, lateral scatter limits the dose reduction attainable with shielding, although the presence of bone-like structures in the phantom reduces the impact of this effect.ConclusionsDose distributions in shielded IORT procedures are affected by distinct contributions when considering the regions near the shielding and deeper in tissue: insufficient shielding may lead to residual dose and hotspots, and the scattering effects may enlarge the beam in depth. These effects must be carefully considered when planning an IORT treatment with shielding.  相似文献   

6.
In head computed tomography, radiation upon the eye lens (as an organ with high radiosensitivity) may cause lenticular opacity and cataracts. Therefore, quantitative dose assessment due to exposure of the eye lens and surrounding tissue is a matter of concern. For this purpose, an accurate eye model with realistic geometry and shape, in which different eye substructures are considered, is needed. To calculate the absorbed radiation dose of visual organs during head computed tomography scans, in this study, an existing sophisticated eye model was inserted at the related location in the head of the reference adult male phantom recommended by the International Commission on Radiological Protection (ICRP). Then absorbed doses and distributions of energy deposition in different parts of this eye model were calculated and compared with those based on a previous simple eye model. All calculations were done using the Monte Carlo code MCNP4C for tube voltages of 80, 100, 120 and 140 kVp. In spite of the similarity of total dose to the eye lens for both eye models, the dose delivered to the sensitive zone, which plays an important role in the induction of cataracts, was on average 3% higher for the sophisticated model as compared to the simple model. By increasing the tube voltage, differences between the total dose to the eye lens between the two phantoms decrease to 1%. Due to this level of agreement, use of the sophisticated eye model for patient dosimetry is not necessary. However, it still helps for an estimation of doses received by different eye substructures separately.  相似文献   

7.
Measurements were performed on the 30, 40 and 60-mm 90Sr/Y beta-emitter source trains used in the Novoste Beta-Cath system to determine the dosimetric characteristics of the sources at millimeter distances and provide the necessary TG-60 dosimetry parameters for mapping the dose distributions. These measurements were carried out in a Solid Water phantom where MD-55-2 Gafchromic films were placed in direct contact with a 5 French (F) catheter used for the 30 and 60-mm source trains and a 3.5 F catheter used for a thinner 40-mm source train. The dosimetric analysis was performed according to the AAPM TG-60 formalism. For the 30-mm source train, data were collected with the source axis at distances of 0.41 and 1.19 mm from the film surface, respectively, in order to investigate possible dosimetric effects due to the intrinsic off centering of the source train lumen within the 5 F catheter. Absolute dose rates at 2 mm were determined by calibrating the radiochromic film in a high energy electron beam from a radiotherapy accelerator. The dose rates at a radial distance of 2 mm were found to be within 10% of the values provided by Novoste. Radial dose functions from this study were in good agreement (< or = 10%) with a 30-mm, 90Sr/Y source train dose data generated from C. G. Soares et al. 90Sr/Y single seed data. However, larger differences were observed at distances shorter than 1 mm when compared to radial dose functions from the Novoste Monte Carlo data.  相似文献   

8.
PurposeTo assess out-of-field doses in radiotherapy treatments of paediatric patients, using Monte Carlo methods to implement a new model of the linear accelerator validated against measurements and developing a voxelized anthropomorphic paediatric phantom.MethodsCT images of a physical anthropomorphic paediatric phantom were acquired and a dosimetric planning using a TPS was obtained. The CT images were used to perform the voxelization of the physical phantom using the ImageJ software and later implemented in MCNP. In order to validate the Monte Carlo model, dose measurements of the 6 MV beam and Linac with 120 MLC were made in a clinical setting, using ionization chambers and a water phantom. Afterwards TLD measurements in the physical anthropomorphic phantom were performed in order to assess the out-of-field doses in the eyes, thyroid, c-spine, heart and lungs.ResultsThe Monte Carlo model was validated for in-field and out-of-field doses with average relative differences below 3%. The average relative differences between TLD measurements and Monte Carlo is 14,3% whilst the average relative differences between TLD and TPS is 55,8%. Moreover, organs up to 22.5 cm from PTV center show TLD and MCNP6 relative differences and TLD and TPS relative differences up to 21.2% and 92.0%, respectively.ConclusionsOur study provides a novel model that could be used in clinical research, namely in dose evaluation outside the treatment fields. This is particularly relevant, especially in pediatric patients, for studying new radiotherapy treatment techniques, since it can be used to estimate the development of secondary tumours.  相似文献   

9.
BackgroundTo the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction.Materials and methodsAn IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated.ResultsThe MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose.ConclusionsigIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery.  相似文献   

10.
Introduction and purposeThe Valencia applicators which are accessories of the microSelectron-HDR afterloader (Nucletron, Veenendaal, The Netherlands) are designed to treat skin lesions. These cup-shaped applicators are an alternative to superficial/orthovoltage x-ray treatment units. They limit the irradiation to the required area using tungsten-alloy shielding, and are equipped with a tungsten-alloy flattering filter allowing the treatment of skin tumors, the oral cavity, vaginal cuff, etc. The tungsten-alloy thickness to shield radiation is not the same in all parts of the applicators. This fact led us to question whether the leakage radiation differs depending on where it is measured, and whether this may be relevant in some clinical cases. The purpose of this work is to study from the radiation protection point of view the radiation leakage of the Valencia applicators, and provide a solution for current users and for the manufacturer.Methods and materialsSimulations based on the Monte Carlo (MC) method using the Geant4 code have been realized studying the dose rate distribution in air around the cup of the Valencia applicators. An experimental study with radiochromic film has also been done to measure the dose distribution in the back side of the applicators and to compare it with MC results.Results and conclusionsRadiation leakage of up to 170% of the prescribed dose has been found at the back surface of these applicators. Although this side is not usually directed to the patient, in some applications such as the treatment of a lesion on the nose, special care must be taken to avoid unexpected and unnecessary irradiation of the eyes. A possible solution could be to add additional shielding to the applicator in order to reduce this leakage or to put some shielding to protect the eyes. Additionally, a new concept design of the Valencia applicators using more shielding material in the applicator backside is proposed.  相似文献   

11.
PurposeIn IOERT a single dose of radiation is delivered to the tumour site during surgery. Manual dose calculations are used and the irradiation target volume, electron energy and applicator are decided on site by the radiation oncologist. This work assesses the effect that irregular and curved surfaces, typical of pelvic IOERT, may have on the expected dose distribution.MethodsThe feasibility of using Gafchromic EBT3 films and a slab phantom to obtain 2D dose distributions was investigated. Different set-ups were tested by comparison with water tank measurements, applying the gamma function analysis with 2% and 2 mm criteria. The validated set-up was then used to obtain reference dose distributions, which were converted to colour-coded graphical representations. Phantoms with step-like and curved surfaces were created to simulate typical pelvic IOERT irradiation surfaces, and the dose distributions were obtained and compared with the reference distributions.ResultsGood agreement with water tank measurements was obtained for all applicators below 2 mm, using the chosen setup in reference conditions. In non-reference conditions, the presence of a step-like surface creates an adjacent hotspot, followed by a quick reduction of the dose in depth. With curved surfaces, the dose distribution is shifted forward, becoming curved and deeper, but when the applicator is larger than the hole, hotspots are also observed.ConclusionsThe shape of the irradiation surfaces alters the dose distribution. Visualization of these effects is important to assess target coverage and interpret in vivo measurements in pelvic IOERT.  相似文献   

12.
A new tandem applicator with tungsten shield for Ir-192 radiation source used in intra-cavitary brachytherapy (ICBT) enabled intensity modulated brachytherapy (IMBT) in cervical cancer treatment through fluence-modulation by rotating shield. Our previous work employed group-wise and element-wise sparsity constraints for plan optimization of tandem applicator to minimizes the number of activated angles and source dwell points for delivery efficiency. It, however, did not incorporate the ovoid applicators into the optimizing process, which is generally used to prevent cancer recurrence. To integrate ovoid applicators to the new tandem applicator, this work proposed a comprehensive framework that modifies 1) dose deposition matrix for inverse planning, and 2) plan optimizing algorithm. The dose deposition matrix was newly formulated by the Monte-Carlo simulated dose distribution for 10 positions of ovoid applicators, followed by combining those with tandem-associated dose deposition matrix. The plan optimizing algorithm decomposed entire elements into tandem and ovoid applicators, which were governed by different constraints adaptive to specified plan objectives. The integrated framework was compared against conventional ICBT, and IMBT with tandem only for three patients with asymmetric dose distributions. Integrated IMBT framework resulted in the most optimal plans. Including fluence-modulation by rotating-shield outperformed conventional ICBT in dose sparing to critical organs. Adopting ovoid applicators to the optimization yielded more conformal dose distribution around inferior, laterally expanded region of target volume. The resulting plans reduced D5cc and D2cc by 30.9% and 27.8% for critical organs over conventional ICBT, and by 20.6% and 21.5% for target volume over IMBT with tandem only.  相似文献   

13.

Aim

The aim of the study is to evaluate the differences in dosimetry between tandem-ovoid and tandem-ring gynaecologic brachytherapy applicators in image based brachytherapy.

Background

Traditionally, tandem ovoid applicators were used to deliver dose to tumor in intracavitary brachytherapy. Tandem-ring, tandem-cylinder and hybrid intracavitary, interstitial applicators are also used nowadays in cervical cancer brachytherapy.

Methods and materials

100 CT datasets of cervical cancer patients (stage IB2 – IIIB) receiving HDR application (50 tandem-ovoid and 50 tandem-ring) were studied. Brachytherapy was delivered using a CT-MRI compatible tandem-ovoid (50 patients) and a tandem-ring applicator (50 patients). DVHs were calculated and D2cc was recorded for the bladder and rectum and compared with the corresponding ICRU point doses. The point B dose, the treated volume, high dose volume and the treatment time were recorded and compared for the two applicators.

Results

The mean D2cc of the bladder with TR applicator was 6.746 Gy. TO applicator delivered a mean D2cc of 7.160 Gy to the bladder. The mean ICRU bladder points were 5.60 and 5.63 Gy for TR and TO applicator, respectively. The mean D2cc of the rectum was 4.04 Gy and 4.79 Gy for TR and TO applicators, respectively. The corresponding ICRU point doses were 5.10 Gy and 5.66 Gy, respectively.

Conclusions

The results indicate that the OAR doses assessed by DVH criteria were higher than ICRU point doses for the bladder with both tandem-ovoid and tandem-ring applicators whereas DVH based dose was lower than ICRU dose for the rectum. The point B dose, the treated volume and high dose volume was found to be slightly higher with the tandem-ovoid applicator. The mean D2cc dose for the bladder and rectum was lower with tandem-ring applicators. The clinical implication of the above dosimetric differences needs to be evaluated further.  相似文献   

14.
Monte Carlo calculations are highly spread and settled practice to calculate brachytherapy sources dosimetric parameters. In this study, recommendations of the AAPM TG-43U1 report have been followed to characterize the Varisource VS2000 192Ir high dose rate source, provided by Varian Oncology Systems.In order to obtain dosimetric parameters for this source, Monte Carlo calculations with PENELOPE code have been carried out. TG-43 formalism parameters have been presented, i.e., air kerma strength, dose rate constant, radial dose function and anisotropy function. Besides, a 2D Cartesian coordinates dose rate in water table has been calculated. These quantities are compared to this source reference data, finding results in good agreement with them.The data in the present study complement published data in the next aspects: (i) TG-43U1 recommendations are followed regarding to phantom ambient conditions and to uncertainty analysis, including statistical (type A) and systematic (type B) contributions; (ii) PENELOPE code is benchmarked for this source; (iii) Monte Carlo calculation methodology differs from that usually published in the way to estimate absorbed dose, leaving out the track-length estimator; (iv) the results of the present work comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques, in regards to dose rate uncertainty values and established differences between our results and reference data.The results stated in this paper provide a complete parameter collection, which can be used for dosimetric calculations as well as a means of comparison with other datasets from this source.  相似文献   

15.
PurposeTo determine organ doses from a proton gantry-mounted cone-beam computed tomography (CBCT) system using two Monte Carlo codes and to study the influence on organ doses from different acquisition modes and repeated imaging.MethodsThe CBCT system was characterized with MCNP6 and GATE using measurements of depth doses in water and spatial profiles in air. The beam models were validated against absolute dose measurements and used to simulate organ doses from CBCT imaging with head, thorax and pelvis protocols. Anterior and posterior 190° scans were simulated and the resulting organ doses per mAs were compared to those from 360° scans. The influence on organ doses from repeated imaging with different imaging schedules was also investigated.ResultsThe agreement between MCNP6, GATE and measurements with regard to depth doses and beam profiles was within 4% for all protocols and the corresponding average agreement in absolute dose validation was 4%. Absorbed doses for in-field organs from 360° scans ranged between 6 and 8 mGy, 15–17 mGy and 24–54 mGy for the head, thorax and pelvis protocols, respectively. Cumulative organ doses from repeated CBCT imaging ranged between 0.04 and 0.32 Gy for weekly imaging and 0.2–1.6 Gy for daily imaging. The anterior scans resulted in an average increase in dose per mAs of 24% to the organs of interest relative to the 360° scan, while the posterior scan showed a 37% decrease.ConclusionsA proton gantry-mounted CBCT system was accurately characterized with MCNP6 and GATE. Organ doses varied greatly depending on acquisition mode, favoring posterior scans.  相似文献   

16.
This study explores how the metal materials of the applicator influence the dose distribution when performing brachytherapy for cervical cancer. A pinpoint ionization chamber, Monte Carlo code MCNPX, and treatment planning system are used to evaluate the dose distribution for a single Ir-192 source positioned in the tandem and ovoid. For dose distribution in water with the presence of the tandem, differences among measurement, MCNPX calculation and treatment planning system results are <5%. For dose distribution in water with the presence of the ovoid, the MCNPX result agrees with the measurement. But the doses calculated from treatment planning system are overestimated by up to a factor of 4. This is due to the shielding effect of the metal materials in the applicator not being considered in the treatment planning system. This result suggests that the treatment planning system should take into account corrections for the metal materials of the applicator in order to improve the accuracy of the radiation dose delivered.  相似文献   

17.
PurposeDosimetric assessment of high dose rate (HDR) brachytherapy applicators, printed in 3D with acrylonitrile butadiene styrene (ABS) at different infill percentage.Materials and methodsA low-cost, desktop, 3D printer (Hamlet 3DX100, Hamlet, Dublin, IE) was used for manufacturing simple HDR applicators, reproducing typical geometries in brachytherapy: cylindrical (common in vaginal treatment) and flat configurations (generally used to treat superficial lesions). Printer accuracy was investigated through physical measurements. The dosimetric consequences of varying the applicator’s density by tuning the printing infill percentage were analysed experimentally by measuring depth dose profiles and superficial dose distribution with Gafchromic EBT3 films (International Specialty Products, Wayne, NJ). Dose distributions were compared to those obtained with a commercial superficial applicator.ResultsMeasured printing accuracy was within 0.5 mm. Dose attenuation was not sensitive to the density of the material. Surface dose distribution comparison of the 3D printed flat applicators with respect to the commercial superficial applicator showed an overall passing rate greater than 94% for gamma analysis with 3% dose difference criteria, 3 mm distance-to-agreement criteria and 10% dose threshold.ConclusionLow-cost 3D printers are a promising solution for the customization of the HDR brachytherapy applicators. However, further assessment of 3D printing techniques and regulatory materials approval are required for clinical application.  相似文献   

18.
IntroductionWe present a beam model for Monte Carlo simulations of the IBA pencil beam scanning dedicated nozzle installed at the Skandion Clinic. Within the nozzle, apart from entrance and exit windows and the two ion chambers, the beam traverses vacuum, allowing for a beam that is convergent downstream of the nozzle exit.Materials and methodsWe model the angular, spatial and energy distributions of the beam phase space at the nozzle exit with single Gaussians, controlled by seven energy dependent parameters. The parameters were determined from measured profiles and depth dose distributions. Verification of the beam model was done by comparing measured and GATE acquired relative dose distributions, using plan specific log files from the machine to specify beam spot positions and energy.ResultsGATE-based simulations with the acquired beam model could accurately reproduce the measured data. The gamma index analysis comparing simulated and measured dose distributions resulted in >95% global gamma index pass rates (3%/2 mm) for all depths.ConclusionThe developed beam model was found to be sufficiently accurate for use with GATE e.g. for applications in quality assurance (QA) or patient motion studies with the IBA pencil beam scanning dedicated nozzles.  相似文献   

19.
PurposeIn the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy.MethodsSmall collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0–0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments.ResultsWith perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm).ConclusionA new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario.  相似文献   

20.
Monte Carlo simulations and TLD dosimetry have been performed to determine the dose distributions along the central axis of the 12 mm COMS eye plaques loaded with IRA1-103Pd seeds. Several simulations and measurements have been employed to investigate the effect of Silastic insert and air in front of the eye on dosimetry results along the central axis of the plaque and at some critical ocular structures. Measurements were performed using TLD-GR200A circular chip dosimeters in a PMMA eye phantom. The central axis TLD chips locations were arranged in one central column of eye phantom, in 3 mm intervals. The off-axis TLD chips locations were arranged in three off-axis columns around the central axis column. Version 5 of the MCNP code was also used to evaluate the dose distribution around the plaque. The presence of the Silastic insert results in dose reduction of 14% at 5 mm; also about 7% dose reduction appears at the interface point, due to the air presence and lack of the scattering condition. The overall dosimetric parameters for the COMS eye plaque loaded with new palladium seeds are similar to a commercial widely used seed such as Theragenics200. As the dose calculations under TG-43 assumptions do not consider the effect of the plaque backing and Silastic insert for accurate dosimetry, it's suggested to apply the effect of the eye plaque materials and air on dosimetry results along the central axis of the plaque and at some critical ocular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号