首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
PurposeThis study aimed to measure the eye lens doses received by physicians and other medical staff participating in non-vascular imaging and interventional radiology procedures in Japan.Material and methodsFrom October 2014 to March 2017, 34 physicians and 29 other medical staff engaged in non-vascular imaging and interventional radiology procedures at 18 Japanese medical facilities. These professionals wore radioprotective lead glasses equipped with small, optically stimulated luminescence dosimeters and additional personal dosimeters at the neck during a 1-month monitoring period. The Hp(3) and the Hp(10) and Hp(0.07) were obtained from these devices, respectively. The monthly Hp(3), Hp(10), and Hp(0.07) for each physician and other medical staff member were then rescaled to a 12-month period to enable comparisons with the revised occupational equivalent dose limit for the eye lens.ResultsAmong physicians, the average annual Hp(3) values measured by the small luminescence dosimeters on radioprotective glasses were 25.5 ± 38.3 mSv/y (range: 0.4–166.8 mSv/y) and 9.3 ± 16.6 mSv/y (range: 0.3–82.4 mSv/y) on the left and right sides, respectively. The corresponding values for other medical staff were 3.7 ± 3.1 mSv/y (range: 0.4–10.4 mSv/y) and 3.2 ± 2.7 mSv/y (range: 0.5–11.5 mSv/y), respectively.ConclusionsThe eye lens doses incurred by physicians and other medical staff who engaged in non-vascular imaging and interventional radiology procedures in Japan were provided. Physicians should wear radioprotective glasses and use additional radioprotective devices to reduce the amount of eye lens doses they receive.  相似文献   

2.
Computed tomography angiography (CTA) has become the most valuable imaging modality for the diagnosis of blood vessel diseases; however, patients are exposed to high radiation doses and the probability of cancer and other biological effects is increased. The objectives of this study were to measure the patient radiation dose during a CTA procedure and to estimate the radiation dose and biological effects.The study was conducted in two radiology departments equipped with 64-slice CT machines (Aquilion) calibrated according to international protocols. A total of 152 patients underwent brain, lower limb, chest, abdomen, and pelvis examinations. The effective radiation dose was estimated using ImPACT scan software. Cancer and biological risks were estimated using the International Commission on Radiological Protection (ICRP) conversion factors.The mean patient dose value per procedure (dose length product [DLP], mGy·cm) for all examinations was 437.8 ± 166, 568.8 ± 194, 516.0 ± 228, 581.8 ± 175, and 1082.9 ± 290 for the lower limbs, pelvis, abdomen, chest, and cerebral, respectively. The lens of the eye, uterus, and ovaries received high radiation doses compared to thyroid and testis. The overall patient risk per CTA procedure ranged between 15 and 36 cancer risks per 1 million procedures. Patient risk from CTA procedures is high during neck and abdomen procedures. Special concern should be provided to the lens of the eye and thyroid during brain CTA procedures. Patient dose reduction is an important consideration; thus, staff should optimize the radiation dose during CTA procedures.  相似文献   

3.
PurposeThe aim of the present study was to determine the efficiency of six methods for calculate the effective dose (E) that is received by health professionals during vascular interventional procedures.MethodsWe evaluated the efficiency of six methods that are currently used to estimate professionals’ E, based on national and international recommendations for interventional radiology. Equivalent doses on the head, neck, chest, abdomen, feet, and hands of seven professionals were monitored during 50 vascular interventional radiology procedures. Professionals’ E was calculated for each procedure according to six methods that are commonly employed internationally. To determine the best method, a more efficient E calculation method was used to determine the reference value (reference E) for comparison.ResultsThe highest equivalent dose were found for the hands (0.34 ± 0.93 mSv). The two methods that are described by Brazilian regulations overestimated E by approximately 100% and 200%. The more efficient method was the one that is recommended by the United States National Council on Radiological Protection and Measurements (NCRP). The mean and median differences of this method relative to reference E were close to 0%, and its standard deviation was the lowest among the six methods.ConclusionsThe present study showed that the most precise method was the one that is recommended by the NCRP, which uses two dosimeters (one over and one under protective aprons). The use of methods that employ at least two dosimeters are more efficient and provide better information regarding estimates of E and doses for shielded and unshielded regions.  相似文献   

4.
PurposeIn cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient’s eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed. This study selects the most suitable eye lens protection material for CBCT from among nine materials by evaluating the dose reduction rate and image quality.MethodsTo determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. For image quality assessment, the artifact index was calculated based on the pixel value and image noise within various regions of interest in a water phantom.ResultsThe protective materials exhibited dose reduction; however, streak artifacts were observed near the materials. The dose reduction rate and the degree of the artifact varied significantly depending on the protective material. The dose reduction rates were 14.6%, 14.2%, and 26.0% when bismuth shield: normal (bismuth shield in the shape of an eye mask), bismuth shield: separate (two separate bismuth shields), and lead goggles were used, respectively. The “separate” bismuth shield was found to be effective in dose reduction without lowering the image quality.ConclusionWe found that bismuth shields and lead goggles are suitable protective devices for the optimal reduction of lens doses.  相似文献   

5.

In this study, which is the first of its kind in the gulf region, eye doses of interventional cardiologists and nurses were measured using active dosimeters for left and right eyes, in 60 percutaneous coronary interventions in three main hospitals in Kuwait. The dose given in terms of Hp(0.07) per procedure when ceiling suspended screens were used by main operators ranged from 18.5 to 30.3 µSv for the left eye and from 12.6 to 23.6 µSv for the right eye. Taking into account typical staff workload, the results show that the dose limit of 20 mSv/year to the eyes can be exceeded for interventional cardiologists in some situations, which demonstrates the need of using additional effective radiation protection tools, e.g. protective eye spectacles, in addition to the regular and proper use of ceiling suspended screens. With indications of increase in workload, the need for availability of a dedicated active dosimeter for the regular monitoring of eye doses is emphasized.

  相似文献   

6.
Measurements of eye lens dose using over apron dosimeters with a geometric correction factor is an international accepted practice. However, further knowledge regarding geometric correction factors in different contexts is required. The authors studied the correlation between eye lens dose and over apron dosimetry for different medical specialties in eleven hospitals, using a standardized protocol, two independent over apron dosimeters (worn at chest and at neck levels) and a dedicated calibration procedure. The results show good correlation between subjects working on the same medical specialty for 5 specialties: Interventional Radiology, Vascular Surgery, Vascular Radiology, Hemodynamics and Neuroradiology. The geometric correction factors resulting from this study could be used to estimate eye lens dose using over apron dosimeters, which are more comfortable than eye lens dosimeters, as reported by the study subjects, as long as the increased uncertainty of the over apron dosimetry compared to the dedicated eye lens dosimetry is acceptable.  相似文献   

7.
IntroductionSentinel node biopsy is a procedure used for axillary nodal staging in breast cancer surgery. The process uses radioactive 99mTc isotope for mapping the sentinel node(s) and all the staff involved in the procedure is potentially exposed to ionizing radiation. The colloid for radiolabelling (antimone-sulphide) with 99mTc isotope (half-life 6 h) is injected into the patient breast. The injection has activity of 18.5 MBq. The surgeon removes the primary tumor and detects active lymph nodes with gamma detection unit. The tumor as well as the active nodal tissue is transferred to pathologist for the definitive findings. The aim of the study was to measure dose equivalents to extremities and whole body for all staff and suggest practice improvement in order to minimize exposure risk.Materials and methodsThe measurements of the following operational quantities were performed: Hp(10) personal dose equivalent to whole body and Hp(0.07) to extremities for staff as well as ambiental dose for operating theatre and during injection.Hp(0.07) were measured at surgeon’s finger by ring thermoluminescent dosimeter (TLD) type MTS-N, and reader RADOS RE2000. Surgeon and nurse were wearing TLD personal dosimeter at the chest level. Anesthesiologist and anesthetist were wearing electronic personal dosimeters, while pathologist was wearing ring TLD while manipulating tissue samples.Electronic dosimeters used were manufactured by Polimaster, type PM1610.All TLD and electronic dosimeters data were reported, including background radiation. Background radiation was also monitored separately. Personal TLDs are standard for this type of personal monitoring, provided by accredited laboratory.Measurements of ambiental dose in workplaces of other staff involved around the patient was performed before the surgery took place, by calibrated survey meters manufactured by Atomtex, type 1667.The study involved two surgeons and one pathologist, two anesthesiologists and three anesthetists during two months period.Results and discussionThe doses received by all staff are evaluated using passive and active personal dosimeters and ambiental dose monitors and practice was improved based on results collected. Average annual whole body dose for all staff involved in the procedure was less than 0.8 mSv. Extremity dose equivalents to surgeon and pathologist were far below the limits set for professionally exposed (surgeon) and for public (pathologist).ConclusionsAlthough has proven to be very safe for all staff, additional measures for radiation protection, in accordance to ALARA principle (As Low As Reasonably Achievable) should be conducted. The recommendations for practice improvement with respect to radiation protection were issued.  相似文献   

8.
PurposeTo determine the eye lens dose of the Interventional Cardiology (IC) personnel using optically stimulated luminescent dosimeter (OSLD) and the prevalence and risk of radiation – associated lens opacities in Thailand.Methods and results48 IC staff, with age- and sex- matches 37 unexposed controls obtained eye examines. Posterior lens change was graded using a modified Merriam-Focht technique by two independent ophthalmologists. Occupational exposure (mSv) was measured in 42 IC staff, using 2 OSLD badges place at inside lead apron and at collar. Annual eye lens doses (mSv) were also measured using 4 nanoDots OSL placed outside and inside lead glass eyewear. The prevalence of radiation-associated posterior lens opacities was 28.6% (2/7) for IC, 19.5% (8/41) for nurses, and 2.7% (1/37) for controls. The average and range of annual whole body effective dose, Hp(10), equivalent dose at skin of the neck, Hp(0.07) and equivalent dose at eye lens, Hp(3) were 0.80 (0.05–6.79), 5.88 (0.14–35.28), and 5.73 (0.14–33.20) mSv respectively. The annual average and range of eye lens dose using nano Dots OSL showed the outside lead glass eyewear on left and right sides as 8.06 (0.17–32.45), 3.55(0.06–8.04) mSv and inside left and right sides as 3.91(0.05–14.26) and 2.44(0.06–6.24) mSv respectively.ConclusionEye lens doses measured by OSLD badges and nano Dot dosimeter as Hp(10), Hp(0.07) and Hp(3). The eyes of the IC personnel were examined annually by two ophthalmologists for the prevalence of cataract induced by radiation.  相似文献   

9.
IntroductionThe International Atomic Energy Agency (IAEA) organized the 3rd international conference on radiation protection (RP) of patients in December 2017. This paper presents the conclusions on the interventional procedures (IP) session.Material and methodsThe IAEA conference was conducted as a series of plenary sessions followed by various thematic sessions. “Radiation protection of patients and staff in interventional procedures” session keynote speakers presented information on: 1) Risk management of skin injuries, 2) Occupational radiation risks and 3) RP for paediatric patients. Then, a summary of the session-related papers was presented by a rapporteur, followed by an open question-and-answer discussion.ResultsSixty-seven percent (67%) of papers came from Europe. Forty-four percent (44%) were patient studies, 44% were occupational and 12% were combined studies. Occupational studies were mostly on eye lens dosimetry. The rest were on scattered radiation measurements and dose tracking. The majority of patient studies related to patient exposure with only one study on paediatric patients. Automatic patient dose reporting is considered as a first step for dose optimization. Despite efforts, paediatric IP radiation dose data are still scarce. The keynote speakers outlined recent achievements but also challenges in the field. Forecasting technology, task-specific targeted education from educators familiar with the clinical situation, more accurate estimation of lens doses and improved identification of high-risk professional groups are some of the areas they focused on.ConclusionsManufacturers play an important role in making patients safer. Low dose technologies are still expensive and manufacturers should make these affordable in less resourced countries. Automatic patient dose reporting and real-time skin dose map are important for dose optimization. Clinical audit and better QA processes together with more studies on the impact of lens opacities in clinical practice and on paediatric patients are needed.  相似文献   

10.
PurposeThis study aimed to characterize the radiation exposure to patients and workers in a new vascular hybrid operating room during X-ray-guided procedures.MethodsDuring one year, data from 260 interventions performed in a hybrid operating room equipped with a Siemens Artis Zeego angiography system were monitored. The patient doses were analysed using the following parameters: radiation time, kerma-area product, patient entrance reference point dose and peak skin dose. Staff radiation exposure and ambient dose equivalent were also measured using direct reading dosimeters and thermoluminescent dosimeters.ResultsThe radiation time, kerma-area product, patient entrance reference point dose and peak skin dose were, on average, 19:15 min, 67 Gy·cm2, 0.41 Gy and 0.23 Gy, respectively. Although the contribution of the acquisition mode was smaller than 5% in terms of the radiation time, this mode accounted for more than 60% of the effective dose per patient. All of the worker dose measurements remained below the limits established by law.ConclusionsThe working conditions in the hybrid operating room HOR are safe in terms of patient and staff radiation protection. Nevertheless, doses are highly dependent on the workload; thus, further research is necessary to evaluate any possible radiological deviation of the daily working conditions in the HOR.  相似文献   

11.
ObjectiveThis paper aims to provide some practical recommendations to reduce eye lens dose for workers exposed to X-rays in interventional cardiology and radiology and also to propose an eye lens correction factor when lead glasses are used.MethodsMonte Carlo simulations are used to study the variation of eye lens exposure with operator position, height and body orientation with respect to the patient and the X-ray tube. The paper also looks into the efficiency of wraparound lead glasses using simulations. Computation results are compared with experimental measurements performed in Spanish hospitals using eye lens dosemeters as well as with data from available literature.ResultsSimulations showed that left eye exposure is generally higher than the right eye, when the operator stands on the right side of the patient. Operator height can induce a strong dose decrease by up to a factor of 2 for the left eye for 10-cm-taller operators. Body rotation of the operator away from the tube by 45°–60° reduces eye exposure by a factor of 2. The calculation-based correction factor of 0.3 for wraparound type lead glasses was found to agree reasonably well with experimental data.ConclusionsSimple precautions, such as the positioning of the image screen away from the X-ray source, lead to a significant reduction of the eye lens dose. Measurements and simulations performed in this work also show that a general eye lens correction factor of 0.5 can be used when lead glasses are worn regardless of operator position, height and body orientation.  相似文献   

12.
The paper presents a study of the radiation doses to eye lens of medical staff during endoscopic retrograde cholangiopancreatography (ERCP) procedures performed in a busy gastroenterology department. For each procedure the dose equivalent to the eye, exposure time, dose rate, Kerma Area Product and fluoroscopy time were recorded. Measurements were performed for a period of two months in four main positions of the operating staff, and then extrapolated to estimate annual doses. The fluoroscopy time per ERCP procedure varied between 1.0 min and 28.8 min, with a mean value of 4.6 min. The calculated mean eye dose per procedure varied between 34.9 μSv and 93.3 μSv. The results demonstrated that if eye protection is not used, annual doses to the eye lens of the gastroenterologist performing the procedure and the anesthesiologist can exceed the dose limit of 20 mSv per year.  相似文献   

13.
PurposeThe aim of this study was to measure the occupational exposure using active personal dosimeters (APD) in the PET/CT department at different stages of the operation chain i.e. radiopharmaceutical arrival, activity preparation, dispensing, injection, patient positioning, discharge and compare the radiation exposure doses received using two automatic injection/infusion systems. This paper also reflects optimization processes that were performed to reduce occupational exposure.MethodsMeasured APD data were analysed for medical physicists, radiology technologists and administrative staff from 2014 till 2018. For dispensing and injecting 18F-FDG, the automatic infusion/injection system IRIDE (Comecer, Italy) or the automatic fractionator ALTHEA (Comecer, Italy) with wireless injection system WIS (Comecer, Italy) were used. Radiation exposure optimization methods were applied during the data collection period (installation of the transport port, patient management, APD alarm threshold and etc.).ResultsRadiology technologists who perform injection procedures, regardless of the automatic infusion system, received the highest radiation exposure dose. The average doses to the radiology technologists per one study were 1.72 ± 0.33 μSv and 1.16 ± 0.11 μSv with ALTHEA/WIS and IRIDE system, respectively. The average dose for accompanying the patient to the PET/CT scanner and scan procedure was 0.52 ± 0.07 μSv. For the medical physicists, the average dose was 0.29 ± 0.09 µSv. The measured dose for administrative staff was 0.30 ± 0.15 μSv.ConclusionsOccupational exposure can be effectively optimized by different means including staff monitoring with APD, implementation of radiation safety culture and the usage of automatic infusion systems.  相似文献   

14.
PurposeTo analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose.MethodsThe eye lens dose was estimated in terms of Hp(0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The Hp(0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (PKA) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions.ResultsThe annual eye lens doses estimated on goggles were 4.13 ± 0.93 and 4.98 ± 1.28 mSv. Over the aprons, the doses obtained were 10.83 ± 0.99 and 11.97 ± 1.44 mSv. The correlation between the goggles and the apron dose was R2 = 0.89, with a ratio of 0.38. The correlation with the patient dose was R2 = 0.40, with a ratio of 1.79 μSv Gy−1 cm−2. The dose per procedure obtained over the aprons was 102 ± 16 μSv, and on goggles 40 ± 9 μSv. The eye lens dose normalized to PKA was 2.21 ± 0.58 μSv Gy−1 cm−2.ConclusionsMeasurements of personal dose equivalent over the paediatric cardiologist’s apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used.  相似文献   

15.
PurposeTo investigate lens dose reduction with organ based tube current modulation (TCM) using the Monte Carlo method.MethodsTo calculate lens dose with organ based TCM, 36 pairs of X-ray sources with bowtie filters were placed around the patient head using a projection angle interval of 10° for one rotation of Computed Tomography (CT). Each projection was simulated respectively. Both voxelized and stylized eye models and Chinese reference male phantoms were used in the simulation, and tube voltages 80, 100, 120 and 140 kVp were used.ResultsDose differences between two eye models were less than 20%, but large variations were observed among dose results from different projections of all tube voltages investigated. Dose results from 0° (AP) directions were 60 times greater than those from 180° (PA) directions, which enables organ based TCM reduce lens doses by more than 47%.ConclusionsOrgan based TCM may be used to reduce lens doses. Stylized eye models are more anatomically realistic compared with voxelized eye models and are more reliable for dose evaluation.  相似文献   

16.
Nowadays, Monte Carlo calculations are commonly used for the evaluation of dose distributions and dose volume histograms in eye brachytherapy. However, currently available eye models have simple geometries, and main substructures of the eye are either not defined in details or not distinguished at all. In this work absorbed doses of eye substructures have been estimated for eye plaque brachytherapy using the most realistic eye model available, and compared with absorbed doses obtained with other available eye models. For this, a medium-sized tumour on the left sides of the right eye was considered. Dosimetry calculations were performed for four different eye models developed based on a literature review, and using a 12 mm Collaborative Ocular Melanoma Study plaque containing 131Cs, 103Pd, and 125I sources. Obtained results illustrate that the estimated doses received by different eye substructures strongly depend on the model used to represent the eye. It is shown here that using a non-realistic eye model leads to a wrong estimation of doses for some eye substructures. For example, dose differences of up to 35% were observed between the models proposed by Nogueira and co-workers and Yoriyaz and co-workers, while doses obtained by use of the models proposed by Lesperance and co-workers, and Behrens and co-workers differed up to 100 and 63% as compared to the situation when a realistic model was used, respectively. Moreover, comparing different radionuclides showed that the most uniform dose distribution in the considered tumour region was that from 131Cs, with a coefficient of variation of 33%. In addition, considering the realistic eye model, it was found that the radiosensitive region of the lens received more than the threshold dose of cataract induction (0.5 Gy), for all investigated radionuclides.  相似文献   

17.
Occupational radiation dose of staff handling 125I assessment at the Benin radioimmunoassay laboratory, have been undertaken from October 2012 to April 2013 to determine level of radiation safety. Equivalent dose to skin, whole body and extremities, were measured by the mean of thermoluminescence dosimetry. Firstly, three permanent workers and two students were provided with finger ring dosimeters to wear at index finger base of both hands. Ring dosimeters were used for four months. Secondly, three permanent workers and three students were provided with badge dosimeters to wear at the chest level. Badge dosimeters were renewed monthly for six months. The exposed ring and badge dosimeters were evaluated in Ghana. Permanent workers highest average equivalent dose received at index finger base of both hands was 142.75 ± 89.54, microSV/2 months and that of students was 34.69 ± 29.23, microSV/2 months. Workers skin exposure was below one third of prescribed dose limits for permanents workers (500mSv/yr) and students (150mSv/yr). Whole body exposure, expressed in mSv/month, of permanent workers and students, respectively ranged from 0.12 to 0.23 and from 0.11 to 0.16. Radio-immuno-assay laboratory workers are weakly exposed to ionizing radiation. They are safe from deterministic effect risk.  相似文献   

18.
PurposeTo determine fetal doses in different stages of pregnancy in three common computed tomography (CT) examinations: pulmonary CT angiography, abdomino-pelvic and trauma scan with Monte Carlo (MC) simulations.MethodsAn adult female anthropomorphic phantom was scanned with a 64-slice CT using pulmonary angiography, abdomino-pelvic and trauma CT scan protocols. Three different sized gelatin boluses placed on the phantom’s abdomen simulated different stages of pregnancy. Intrauterine dose was used as a surrogate to a dose absorbed to the fetus. MC simulations were performed to estimate uterine doses. The simulation dose levels were calibrated with volumetric CT dose index (CTDIvol) measurements and MC simulations in a cylindrical CTDI body phantom and compared with ten point doses measured with metal-oxide-semiconductor field-effect-transistor dosimeters. Intrauterine volumes and uterine walls were segmented and the respective dose volume histograms were calculated.ResultsThe mean intrauterine doses in different stages of pregnancy varied from 0.04 to 1.04 mGy, from 4.8 to 5.8 mGy, and from 9.8 to 12.6 mGy in the CT scans for pulmonary angiography, abdomino-pelvic and trauma CT scans, respectively. MC simulations showed good correlation with the MOSFET measurement at the measured locations.ConclusionsThe three studied examinations provided highly varying fetal doses increasing from sub-mGy level in pulmonary CT angiography to notably higher levels in abdomino-pelvic and trauma scans where the fetus is in the primary exposure range. Volumetric dose distribution offered by MC simulations in an appropriate anthropomorphic phantom provides a comprehensive dose assessment when applied in adjunct to point-dose measurements.  相似文献   

19.
Medical exposure of the general population due to radiological investigations is the foremost source of all artificial ionising radiation. Here, we focus on a particular diagnostic radiological procedure, as only limited data are published with regard to radiation measurements during urethrograpic imaging. Specifically, this work seeks to estimate patient and occupational effective doses during urethrographic procedures at three radiology hospitals. Both staff and patient X-ray exposure levels were calculated in terms of entrance surface air kerma (ESAK), obtained by means of lithium fluoride thermoluminescent dosimeters (TLD-100(LiF:Mg:Cu.P)) for 243 urethrographic examinations. Patient radiation effective doses per procedure were estimated using conversion factors obtained from the use of Public Health England computer software. In units of mGy, the median and range of ESAK per examination were found to be 10.8 (3.6–26.2), 7.0 (0.2–32.3), and 24.3 (9.0–32.0) in Hospitals A, B, and C, respectively. The overall mean and range of staff doses (in µGy) were found to be 310 (4.0–1750) per procedure. With the exception of hospital C, the present evaluations of radiation dose have been found to be similar to those of previously published research. The wide range of patient and staff doses illustrate the need for radiation dose optimisation.  相似文献   

20.
PurposeInterventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results.MethodsTwo fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure.ResultsThe new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring.ConclusionThe study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号