首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
以实生桃(Prunus persica)苗为试材, 探讨SnRK1对不同浓度蔗糖及处理时间的响应特性, 揭示蔗糖对植株生长发育的影响, 以期为果树生产提供理论依据及技术支持。结果表明, 施加5%蔗糖时, 植株体内SnRK1酶活性最高, 且在一定时间内, 酶活性持续升高; 与对照(清水和甘露醇)相比, 5%蔗糖处理显著提高植株可溶性糖、淀粉和叶片叶绿素含量, 增加植株地上部和地下部生物量, 显著加快植株净光合速率; 通过观察根系构型, 发现5%蔗糖可以显著增加根系总表面积、总体积和侧根数量, 并可促进根系加粗加长生长。qRT-PCR分析表明, 外源蔗糖能促进根系中生长素的合成和转运。综上, 一定浓度蔗糖可以提高植株体内SnRK1酶活性, 影响植株碳代谢, 促进植株生长发育, 且增加根系生长素的合成与转运, 进而影响根系构型。  相似文献   

2.
植物在自然界中面临各种环境侵害时候,如干旱、盐、低温和病菌袭击,会启动自身的抵御机制来适应各种侵害。蔗糖非发酵相关的蛋白激酶(sucrose non-fermenting-1-related protein kinase,SnRK)是广泛存在于植物中的一类Ser/Thr蛋白激酶,参与各种胁迫信号传导通路,对植物抵御不良环境起到重要作用。植物中蔗糖非发酵相关的蛋白激酶共有38个成员,可以分为3个亚家族:SnRK1、SnRK2和SnRK3。本文主要讨论SnRK家族的研究进展,揭示SnRK家族在植物抗逆中的重要作用。  相似文献   

3.
研究盆栽条件下,接种褐环乳牛肝菌(Suillus luteus)和红汁乳菇(Lactarius hatsudake)对油松(Pinus tabulaeformis)苗木生长,抗氧化酶活性和根系构型的影响。结果表明:(1)褐环乳牛肝菌和红汁乳菇均可与油松合成外生菌根,并显著提高苗木的苗高、地径、鲜重和干重。(2)接种褐环乳牛肝菌苗木针叶抗氧化酶(SOD、CAT、POD)活性分别比接种红汁乳菇苗木高14.77%、20.77%、34.68%;接种褐环乳牛肝菌苗木根系抗氧化酶(SOD、CAT、POD)活性分别比接种红汁乳菇苗木高8.54%,4.34%,33.31%;接种处理苗木抗氧化酶活性均显著高于不接种处理。接种处理苗木根长、表面积、体积、平均直径、根尖数、分叉数显著高于不接种处理;接种处理间苗木只有根尖数存在显著差异;接种褐环乳牛肝菌的油松根系分支成80°—90°的一级侧根数占23.81%,显著多于接种红汁乳菇和对照苗木。研究表明,接种褐环乳牛肝菌和红汁乳菇均能促进油松苗木生长,提高油松体内抗氧化酶活性,扩大苗木根系的吸收范围,其中褐环乳牛肝菌各方面的促进效果要优于红汁乳菇。  相似文献   

4.
外源蔗糖对盐胁迫荞麦幼苗根系生长的缓解效应   总被引:4,自引:0,他引:4  
实验结果表明,盐胁迫下,添加外源蔗糖后,荞麦根系伸长生长和根系活力增加,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性下降,过氧化氢酶(CAT)活性升高,丙二醛(MDA)含量下降,总黄酮含量和苯丙氨酸解氨酶(PAL)活性极显著升高。  相似文献   

5.
为了揭示低磷胁迫下蔗糖对杉木低磷胁迫响应和蔗糖代谢的影响,选用两种不同磷效率杉木家系M32和M28进行低磷胁迫下的蔗糖添加试验,分析蔗糖添加对低磷胁迫下杉木形态特征、生理特性和低磷诱导相关基因表达的影响。结果表明:蔗糖添加促进了低磷胁迫下杉木苗高、根长、根表面积、根平均直径、根体积、根叶组织蔗糖含量和根叶组织无机磷含量的增加,但仍明显低于正常供磷处理下添加蔗糖处理的杉木增量。低磷促进杉木叶中花青素的积累,而正常供磷和低磷胁迫下的蔗糖添加处理都显著促进了叶片花青素含量的增加。随着胁迫时间的延长,M28与M32在根、叶组织的蔗糖含量存在显著差异,且M28根叶组织中的蔗糖合成酶活性和蔗糖磷酸合成酶活性都高于M32。蔗糖合成酶ClSuSy在M28和M32根系中受低磷胁迫诱导下调表达,但蔗糖添加处理明显诱导ClSuSy表达量升高,M28在正常供磷并添加蔗糖处理下的ClSuSy表达量显著高于其它处理。蔗糖转运蛋白SUT4、磷转运蛋白ClPht1;4、紫色酸性磷酸酶PAP1和PAP11在M28和M32根系中总体上受低磷胁迫诱导上调表达,且受蔗糖添加处理诱导下调表达。低磷胁迫下,添加或不添加蔗糖处理的M32根系SUT4的表达量均在15d时显著升高,并在45d时回落到正常水平。ClPht1;4和PAP1在低磷胁迫15d的表达量显著高于45d时的表达量,且ClPht1;4在M32根系中的表达量远高于M28。本研究表明,蔗糖对杉木低磷胁迫响应和糖代谢有重要的影响作用,低磷胁迫下添加蔗糖处理能够在一定程度上缓解杉木低磷胁迫响应。  相似文献   

6.
以‘小白凤’水蜜桃的果实为试材,利用miR-RACE技术验证了桃基因组中预测的ppe-miR167a的精确序列,克隆了预测的其3个ARFs靶基因PpARF6、PpARF8和PpARF6-like的ORF序列,并对预测靶基因进行了系统进化和保守结构域分析;同时降解组测序鉴定了ppe-miR167a的靶基因,并对二者间的作...  相似文献   

7.
以1年生香樟(Cinnamomum camphora)幼苗为试材,设置对照组(CK)、中度干旱处理(M)、重度干旱处理(S)三个处理,比较不同土壤湿度下香樟幼苗不同时期地上部分生长和根系构型,探究香樟幼苗根系对不同土壤湿度的适应性及其耐旱机制。结果表明,中度和重度干旱处理组的香樟根系及地上部分干物质积累、根系长度、根系表面积、根系直径和根尖数均显著小于对照组(P<0.05)。同时干旱显著增加香樟幼苗的根系拓扑指数,降低香樟根的分形维数和平均分枝角度(P<0.05)。可见土壤湿度程度及处理时间显著影响香樟根系的生长及在土壤中的布局。较低土壤湿度可显著抑制根长的延长、根表面积扩大和根的增殖,且随着土壤湿度的继续降低以及处理时间延长,香樟幼苗根系的生长受到水分亏缺的抑制作用加重,根系建成成本增高的同时,根系分枝的复杂性降低,根系必须通过朝着更陡、更深的方向生长伸长来提高水分吸收效率。建议在园林绿化工程养护过程中制定科学的水分管理策略,以满足香樟生长过程中对土壤水分的需要。  相似文献   

8.
通过比较不同时期不同强度干旱胁迫下杉木1年生盆栽苗地上部分生长、根系构型以及根系中非结构性碳水化合物含量(TNC)的变化,并分析各指标之间的相关性,探究杉木根系在干旱胁迫下的适应性策略以及抗旱生理机制,以期为杉木造林生产和水分管理提供科学依据和技术指导。结果表明:随着干旱程度的加强,杉木幼苗地上部分干重(SDW)、根干重(RDW)、根长(RL)、根表面积(SA)、根体积(RV)、根尖数(RT)、根系分支角度(Angle)、分形维数(FD)逐渐减小,根冠比(R/T)逐渐增大,根系拓扑指数(TI)、根系平均直径(RD)先增大后减小,比根长(SRL)先减小后增大。而根系连接长度(LL)、TNC、糖淀比在不同时期表现出不同的趋势。连接长度随着干旱胁迫的加强在30 d和60 d时表现出逐渐增加趋势而在90 d时则表现出先减小后增大的趋势。TNC在30 d和60 d时先增大后减小,但90 d时,呈逐渐下降的趋势。糖淀比随着干旱胁迫的加强在30 d和60 d时表现出先增加后减小趋势,90 d时,表现为先减小后增大。干旱胁迫显著影响根系在不同径级的分布长度,且随着胁迫时间的延长不断变化。杉木地上部分生长与根系生长指标(RL、SA、RV、RT、RDW)以及根系构型指标(Angle、FD)之间存在显著的正相关(P < 0.01),根系平均直径与TNC存在显著的正相关(P < 0.05)。总之,杉木通过增加根系光合产物的积累、提高根系建成成本,增加有限成本下根系的复杂程度和延伸范围,降低根系分支角度,使根系\"更陡更深\"来适应不同强度的干旱胁迫。  相似文献   

9.
缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响   总被引:5,自引:0,他引:5  
用液培方法研究了缺磷胁迫对小麦(Triticum aestivum L.)根系生长的影响。结果表明,随着介质磷水平的提高,小麦根轴长度和植株生长素深度均降低。在低磷条件下用生长素极性运输抑制剂三碘苯甲酸(TIBA)处理后,小麦的根轴长度明显降低,表明生长素参与了缺磷小麦根轴生长的调控。缺磷小麦根部生长素浓度的提高诱导了细胞周期蛋白基因cyc1At的素达,促进了根分生组织细胞的分裂并驱动了根的生长。  相似文献   

10.
蒋佳  朱星宇  李晶 《西北植物学报》2020,40(9):1549-1557
色氨酸是合成蛋白质的重要氨基酸,也是植物生长激素IAA和某些次生代谢产物的前体物质,对植物生长发育及病虫害防御有重要作用。为了探究色氨酸对白菜型油菜(Brassica rapa L)生长发育及防御物质累积的影响及其可能的机制,该研究采用外源色氨酸对油菜幼苗进行叶面喷施,分析了色氨酸对油菜幼苗生长发育及生长素IAA和次生代谢产物芥子油苷合成的影响。结果表明:(1)低浓度色氨酸(100 mg/L)处理可有效地促进油菜叶片与根系的发育,但随着浓度增高,促进作用逐渐减弱。(2)荧光定量PCR分析表明,外源色氨酸处理后,油菜幼苗叶片中生长素IAA的3条合成途径都被激活,IPA途径的BrTAA1和BrYUCCA8、IAM途径的BrAMI1及IAOx途径的BrCYP71A13和BrNIT2等关键酶基因的表达均受到强烈的诱导,因而导致IAA的含量显著提高。(3)外源色氨酸处理还激活了下游的吲哚族芥子油苷的合成途径调控因子基因BrMYB34、BrMYB51和BrMYB122以及合成酶基因BrCYP79B2、BrCYP79B3、BrCYP83B1、BrSUR1的表达,同时抑制了其降解酶基因BrTGG1、BrPEN2的表达,从而引起吲哚族芥子油苷的累积。研究发现,外源色氨酸处理可通过调控生长素IAA合成途径和吲哚族芥子油苷的合成途径相关基因表达,有效地促进油菜生长调节物质和生物防御物质的累积,从而增加生物量和提高潜在抗病能力。  相似文献   

11.
12.
    
Sequence analysis identified serine 170 (S170) of the maize (Zea mays L.) SUS1 sucrose synthase (SUS) protein as a possible, second phosphorylation site. Maize leaves contained two calcium-dependent protein kinase activities and a calcium-independent kinase activity with characteristics of an sucrose non-fermenting 1 (SNF1)-related protein kinase. Phosphorylation of the novel S170 and the known serine 15 (S15) site by these protein kinases was determined in peptide substrates and detected in SUS1 protein substrates utilizing sequence- and phosphorylation-specific antibodies. We demonstrate phosphorylation of S170 in vitro and in vivo. The calcium-dependent protein kinases phosphorylated both S170 and S15, whereas SNF1-related protein kinase activity was restricted to S15. Calcium-dependent protein-kinase-mediated S170 and S15 phosphorylation kinetics were determined in wild-type and mutant SUS1 substrates. These analyses revealed that kinase specificity for S170 was threefold lower than that for S15, and that phosphorylation of S170 was stimulated by prior phosphorylation at the S15 site. The SUS-binding peptides encoded by early nodulin 40 (ENOD40) specifically antagonized S170 phosphorylation in vitro. A model wherein S170 phosphorylation functions as part of a mechanism targeting SUS for proteasome-mediated degradation is supported by the observations that SUS proteolytic fragments: (i) were detected and possessed relatively high phosphorylated-S170 (pS170) stoichiometry; (ii) were spatially coincident with proteasome activity within developing leaves; and (iii) co-sedimented with proteasome activity. In addition, full-length pS170-SUS protein was less stable than S170-SUS in cultured leaf segments and was stabilized by proteasome inhibition. Post-translational control of SUS protein level through pS170-promoted proteolysis may explain the specific and significant decrease in SUS abundance that accompanies the sink-to-source transition in developing maize leaves.  相似文献   

13.
The objective was to reduce in vitro production costs while retaining or improving plant quality, in particular the suitability for pot plant production. Plants were grown at photosynthetic photon flux densities (PPFD) of 0–40 μmol m-2 s-1 and sucrose concentrations of 3–7% during the multiplication phase and the effects of sucrose, BA, and NAA during root formation were investigated. Ex vitro growth were tested in both experiments. A small reduction in the rhizome multiplication rate was found with increasing PPFD and sucrose concentration. Increasing sucrose concentration reduced the number of aerial shoots. Aerial shoots were etiolated when cultured in darkness and their number increased with increasing PPFD at 3% sucrose, whereas PPFD did not affect the number of aerial shoots at 5 or 7% sucrose. During the multiplication phase a synergistic promoting effect of PPFD and sucrose was observed on root formation. Root formation after transfer to rooting medium was affected by sucrose and PPFD during the multiplication phase. PPFD did not influence root formation after propagation on 7% sucrose, whereas on 3 or 5 % sucrose root formation was gradually inhibited when PPFD was decreased below 17 μmol m-2 s-1. The formation of thick roots was promoted by propagation in light, and not influenced by sucrose concentration. Ex vitro growth was not affected by in vitro conditions, except for 7% sucrose during the multiplication phase that reduced flowering. Root formation on rooting medium was reduced by BA and promoted both by NAA and high levels of sucrose. The root inhibiting effect of BA could not completely be overcome by simultaneous application of NAA and high sucrose concentrations. Thick roots were only produced in the presence of NAA, and not affected by sucrose treatment. Ex vitro flowering was negatively influenced by the presence of BA during root formation and by high levels of sucrose if BA was absent in the rooting medium. High sucrose levels and NAA could partially compensate for the negative effect of BA on flowering. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
    
Watermelon(Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid(ABA) signaling pathway gene ClSnRK2.3 might infuence watermelon fruit ripening. However,the molecular mechanisms are unclear. Here,we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator ...  相似文献   

15.
  总被引:9,自引:0,他引:9  
The hormone auxin is transported in plants through the combined actions of diffusion and specific auxin influx and efflux carriers. In contrast to auxin efflux, for which there are well documented inhibitors, understanding the developmental roles of carrier-mediated auxin influx has been hampered by the absence of specific competitive inhibitors. However, several molecules that inhibit auxin influx in cultured cells have been described recently. The physiological effects of two of these novel influx carrier inhibitors, 1-naphthoxyacetic acid (1-NOA) and 3-chloro-4-hydroxyphenylacetic acid (CHPAA), have been investigated in intact seedlings and tissue segments using classical and new auxin transport bioassays. Both molecules do disrupt root gravitropism, which is a developmental process requiring rapid auxin redistribution. Furthermore, the auxin-insensitive and agravitropic root-growth characteristics of aux1 plants were phenocopied by 1-NOA and CHPAA. Similarly, the agravitropic phenotype of inhibitor-treated seedlings was rescued by the auxin 1-naphthaleneacetic acid, but not by 2,4-dichlorophenoxyacetic acid, again resembling the relative abilities of these two auxins to rescue the phenotype of aux1. Further investigations have shown that none of these compounds block polar auxin transport, and that CHPAA exhibits some auxin-like activity at high concentrations. Whilst results indicate that 1-NOA and CHPAA represent useful tools for physiological studies addressing the role of auxin influx in planta, 1-NOA is likely to prove the more useful of the two compounds.  相似文献   

16.
    
《Current biology : CB》2023,33(11):2201-2212.e3
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
    
The plant hormone auxin plays a critical role in root growth and development; however, the contributions or specific roles of cell-type auxin signals in root growth and development are not well understood. Here, we mapped tissue and cell types that are important for auxin-mediated root growth and development by manipulating the local response and synthesis of auxin. Repressing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele strongly inhibited root growth, with the largest effect observed in the endodermis. Enhancing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele also caused reduced root growth, albeit to a lesser extent. Moreover, we established that root growth was inhibited by enhancement of auxin synthesis in specific cell types of the epidermis, cortex and endodermis, whereas increased auxin synthesis in the pericycle and stele had only minor effects on root growth. Our study thus establishes an association between cellular identity and cell type-specific auxin signaling that guides root growth and development.  相似文献   

19.
Cytokinins as inhibitors of root growth   总被引:2,自引:0,他引:2  
The elongation of roots of wheat ( Triticum aestivum L. cv. Diamant II), flax ( Linum usitatissimum L. cv. Concurrent) and cucumber ( Cucumis sativus L. cv. Favör) seedlings in the dark was strongly inhibited by various native and synthetic cytokinins (kinetin, benzyladenine, isopentenyladenine, zeatin and their corresponding 9-ribosides). An inhibition of 50% was obtained for wheat roots with 3 · 10−9 M zeatin and for flax roots with 6 · 10−9 M isopentenyladenine. The ribosides were in all cases less inhibitory. The inhibition was reversed by various types of 'antiauxins' and 'antiethylenes' (such as structural auxin analogues, uncouplers, specific inhibitors of ethylene synthesis, free radical scavengers, inhibitors of ethylene action). These substances as a rule counteract also inhibitions caused by auxins. Auxins and cytokinins stimulate ethylene production synergistically, and the similar inhibitory effects of these two types of hormone can be understood if it is assumed that their effect is at least partly mediated through ethylene. The cytokinins must be considered as possible natural inhibitors and regulators of root growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号