首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveDifferent dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation.MethodsPieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis.ResultsResponse functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy.ConclusionAlthough reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy.  相似文献   

2.
3.
4.
PurposeThis study provides methodology of calibrating as well as controlling the output for an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay irradiated in a low energy proton beam using EBT3-model GAFCHROMICTM film, without correcting for quenching effect.MethodsA calibrated Markus ionization chamber was used to measure the depth dose and beam output for 26.5 MeV protons produced by a CS30 cyclotron. A time-controlled aluminum cylinder was added in front of the horizontal beam-exit serving as a radiation shutter. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water at a reference depth of 3 mm. EBT3 film was calibrated for doses up to 8 Gy at the same depth. To verify the dose distribution for each 96-well MTT assay plate, EBT3 film was placed at the reference depth during irradiation and cell doses were scaled by measured percent depth dose (PDD) data.ResultsThe radiochromic film dosimetry system in this study provides dose measurements with an uncertainty better than 3.3% for doses higher than 1 Gy. From a single exposure and utilizing the Gaussian shape of the beam, multiple dose points can be obtained within different wells of the same plate ranging from 6.9 Gy (sigma ∼4%) in the central well, and 2 Gy (sigma ∼8%) for wells positioned closer to the periphery.ConclusionsWe described a methodology for radiochromic film-based dose monitoring system, using low-energy protons, which can be used for the MTT assay in any proton beam, except within Bragg peak region.  相似文献   

5.
PurposeQuality assurance (QA) is one of the most important issues that should be addressed for intraoperative electron radiotherapy (IOERT), which is not benefiting from image-based treatment planning system. The aim of this study is to evaluate the dosimetric characteristics of Gafchromic EBT2 film for breast IOERT QA procedure.MethodsDue to the fact that some dedicated accelerators are being used for IOERT, dependence of the film response to energy, field size, dose rate and incidence angle of electron beam from the LIAC IOERT accelerator was studied. Then, film response curve to breast IOERT doses was obtained and its accuracy was evaluated and justified through comparison to the results of ionometric dosimetry.ResultsThe results of this study indicated that there are no significant differences between the film responses at different energies of 6, 8, 10 and 12 MeV (P-value = 0.99). Similarly, no field size dependency was found when evaluating the response of the film to different field sizes ranging from 4 to 10 cm (P-value = 0.94). Film response was found to be independent of the dose rate of intraoperative electron beam (P-value = 0.12). Film response variations with changing the beam incidence angle were not significant (P-value > 0.8). Calibration curve at the dose range of 8–24 Gy had an acceptable accuracy. The difference between the results of film dosimetry and ionometric dosimetry was around 5% which was in agreement with the results of dose uncertainty estimation.ConclusionThe EBT2 film was found to be a potentially appropriate tool for breast IOERT verification.  相似文献   

6.
PurposeTo provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms.Material and methodsTwo lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images.ResultsThe dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy.ConclusionA multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry.  相似文献   

7.
In this work, the apparent treatment dose that kV planar or CBCT imaging contributes to Gafchromic EBT3 film used for in vivo dosimetry, was investigated. Gafchromic EBT3 film pieces were attached to a variety of phantoms and irradiated using the linear accelerator’s built-in kV imaging system, in both kV planar mode and CBCT mode. To evaluate the sensitivity of the film in the clinical scenario where dose contributions are received from both imaging and treatment, additional pieces of film were irradiated using base doses of 50 cGy and then irradiated using selected kV planar and CBCT techniques. For kV planar imaging, apparent treatment doses of up to 3.4 cGy per image pair were seen. For CBCT, apparent treatment doses ranged from 0.22 cGy to 3.78 cGy. These apparent doses were reproducible with and without the inclusion of the 50 cGy base dose. The contribution of apparent treatment dose from both planar kV as well as CBCT imaging can be detected, even in conjunction with an actual treatment dose. The magnitude of the apparent dose was found to be dependent on patient geometry, scanning protocol, and measurement location. It was found that the apparent treatment dose from the imaging could add up to 8% of additional uncertainty to the in vivo dosimetry result, if not taken into account. It is possible for this apparent treatment dose to be accounted for by subtraction of the experimentally determined apparent doses from in vivo measurements, as demonstrated in this work.  相似文献   

8.
PurposeIntraoperative radiation therapy (IORT) using electron beam is commonly done by mobile dedicated linacs that have a variable range of electron energies. This paper focuses on the evaluation of the EBT2 film response in the green and red colour channels for IORT quality assurance (QA).MethodsThe calibration of the EBT2 films was done in two ranges; 0–8 Gy for machine QA by red channel and 8–24 Gy for patient-specific QA by green channel analysis. Irradiation of calibration films and relative dosimetries were performed in a water phantom. To evaluate the accuracy of the film response in relative dosimetry, gamma analysis was used to compare the results of the Monte Carlo simulation and ionometric dosimetry. Ten patients with early stage breast cancer were selected for in-vivo dosimetry using the green channel of the EBT2 film.ResultsThe calibration curves were obtained by linear fitting of the green channel and a third-order polynomial function in the red channel (R2 = 0.99). The total dose uncertainty was up to 4.2% and 4.7% for the red and green channels, respectively. There was a good agreement between the relative dosimetries of films by the red channel, Monte Carlo simulations and ionometric values. The mean dose difference of the in-vivo dosimetry by green channel of this film and the expected values was about 1.98% ± 0.75.ConclusionThe results of this study showed that EBT2 film can be considered as an appropriate tool for machine and patient-specific QA in IORT.  相似文献   

9.
AimTo study the dosimetric impact of statistical uncertainty (SU) per plan on Monte Carlo (MC) calculation in Monaco? treatment planning system (TPS) during volumetric modulated arc therapy (VMAT) for three different clinical cases.BackgroundDuring MC calculation SU is an important factor to decide dose calculation accuracy and calculation time. It is necessary to evaluate optimal acceptance of SU for quality plan with reduced calculation time.Materials and methodsThree different clinical cases as the lung, larynx, and prostate treated using VMAT technique were chosen. Plans were generated with Monaco? V5.11 TPS with 2% statistical uncertainty. By keeping all other parameters constant, plans were recalculated by varying SU, 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, conformity index (CI), homogeneity index (HI), dose coverage to PTV, organ at risk (OAR) dose, normal tissue receiving dose ≥5 Gy and ≥10 Gy, integral dose (NTID), calculation time, gamma pass rate, calculation reproducibility and energy dependency were analyzed.ResultsCI and HI improve as SU increases from 0.5% to 5%. No significant dose difference was observed in dose coverage to PTV, OAR doses, normal tissue receiving dose ≥5 Gy and ≥10 Gy and NTID. Increase of SU showed decrease in calculation time, gamma pass rate and increase in PTV max dose. No dose difference was seen in calculation reproducibility and dependent on energy.ConclusionFor VMAT plans, SU can be accepted from 1% to 3% per plan with reduced calculation time without compromising plan quality and deliverability by accepting variations in point dose within the target.  相似文献   

10.
PurposeThe accuracy and precision of the dose estimates obtained with radiochromic film dosimetry are investigated in a clinical environment. The improvement in the accuracy of dose estimates reached with corrective methods is analyzed. Two novel re-calibration algorithms for radiochromic film dosimetry are presented.MethodsTwo different EBT3 lots are evaluated in two different centres. They are calibrated in Varian linacs and read in two different EPSON scaners. Once the lots are calibrated, three films per lot are considered and divided into stripes that are exposed to known doses. Several dosimetry protocols usually employed in radiochromic film dosimetry are used to convert film responses to absorbed doses. These protocols are characterized by different choices of the film responses or different sensitometric curves. Finally, the accuracy and reproducibility of the dose estimates is investigated with and without the corrective methods.Results and ConclusionsThe variabilities that affect radiochromic film dosimetry, such as intra-lot variability, inter-scan variability, post-exposure time and film autodevelopment may give rise to inaccuracies in the dose estimates. However, the implementation of re-calibration methods leads to more accurate dose estimates. All the investigated protocols showed more accurate and reproducible results when the re-calibrated methods were employed. So, the novel re-calibration methods may be applied in order to improve the accuracy and reproducibility of radiochromic film dosimetry.  相似文献   

11.
PurposeTo evaluate the uncertainties and characteristics of radiochromic film-based dosimetry system using the EBT3 model Gafchromic® film in therapy photon, electron and proton beams.Material and methodsEBT3 films were read using an EPSON Expression 10000XL/PRO scanner. They were irradiated in five beams, an Elekta SL25 6 MV and 18 MV photon beam, an IBA 100 MeV 5 × 5 cm2 proton beam delivered by pencil-beam scanning, a 60 MeV fixed proton beam and an Elekta SL25 6 MeV electron beam. Reference dosimetry was performed using a FC65-G chamber (Elekta beam), a PPC05 (IBA beam) and both Markus 1916 and PPC40 Roos ion-chambers (60 MeV proton beam). Calibration curves of the radiochromic film dosimetry system were acquired and compared within a dose range of 0.4–10 Gy. An uncertainty budget was estimated on films irradiated by Elekta SL25 by measuring intra-film and inter-film reproducibility and uniformity; scanner uniformity and reproducibility; room light and film reading delay influences.ResultsThe global uncertainty on acquired optical densities was within 0.55% and could be reduced to 0.1% by placing films consistently at the center of the scanner. For all beam types, the calibration curves are within uncertainties of measured dose and optical densities. The total uncertainties on calibration curve due to film reading and fitting were within 1.5% for photon and proton beams. For electrons, the uncertainty was within 2% for dose superior to 0.8 Gy.ConclusionsThe low combined uncertainty observed and low beam and energy-dependence make EBT3 suitable for dosimetry in various applications.  相似文献   

12.
Background and PurposeWith the increasingly prominent role of stereotactic radiosurgery in radiation therapy, there is a clinical need for robust, efficient, and accurate solutions for targeting multiple sites with one patient setup. The end-to-end accuracy of high definition dynamic radiosurgery with Elekta treatment planning and delivery systems was investigated in this study.Materials and MethodsA patient-derived CT scan was used to create a radiosurgery plan to seven targets in the brain. Monaco was used for treatment planning using 5 VMAT non-coplanar arcs. Prior to delivery, 3D-printed phantoms from RTsafe were ordered including a gel phantom for 3D dosimetry, phantom with 2D film insert, and an ion chamber phantom for point dose measurement. Delivery was performed using the Elekta VersaHD, XVI cone-beam CT, and HexaPOD six degree of freedom tabletop.ResultsAbsolute dose accuracy was verified within 2%. 3D global gamma analysis in the film measurement revealed 3%/2 mm passing rates >95%. Gel dosimetry 3D global gamma analysis (3%/2 mm) were above 90% for all targets with the exception of one. Results were indicative of typical end-to-end accuracies (<1 mm spatial uncertainty, 2% dose accuracy) within 4 cm of isocenter. Beyond 4 cm, 2 mm accuracy was found.ConclusionsHigh definition dynamic radiosurgery expands clinically acceptable stereotactic accuracy to a sphere around isocenter allowing for radiosurgery of several targets with one setup with a high degree of dosimetric precision. Gel dosimetry proved to be an essential tool for the validation of the 3D dose distributions in this technique.  相似文献   

13.
BackgroundThe calculation and measurement on the surface of the skin presents a significant dosimetric problem because of numerous factors which have an influence on the dose distribution in this region.AimThe overall aim of this study was to check the agreement between doses measured with thermoluminescent detectors (TLD) during tomotherapy photon beam irradiation of the skin area of a solid water cylindrical phantom with doses calculated with Hi-Art treatment planning system (TPS).Material and MethodThe measurements of the dose were made with the use of a solid water cylindrical phantom - Cheese Phantom. Two bolus phantoms were used: 5 mm and 10 mm Six different planning treatments were generated. The doses were measured using TL detectors.ResultsIn the case of a tumor located near the surface of the skin, the mean dose for 0.5 cm bolus was - 1.94 Gy, and for 1 cm bolus - 2.03 Gy. For the tumor located inside the phantom and organ at risk on the same side that TL detectors, for a 0.5 cm bolus, mean dose was 0.658 Gy, and for a 1 cm bolus, 0.62 Gy.ConclusionThe analysis of results showed that the relative percentage difference between measured and planned dose in the field of irradiation was less than 10%, while the largest differences were on the board of the field of radiation and outside of the field of irradiation, where the dose was 0.08 Gy to 1 Gy.  相似文献   

14.
PurposeWe previously proposed a calculation method using Clarkson integration to obtain the physical dose at the center of the spread-out Bragg peak (SOBP) for a treatment beam, the measurement point of which agrees with the isocenter [Tajiri et al. Med. Phys. 2013; 40: 071733–1–5]. However, at the measurement point which does not agree with the isocenter, the physical dose calculated by this method might have a large error. For this error, we propose a correction method.Materials and methodsTo confirm whether the error can be corrected using in-air off axis ratio (OAR), we measured the physical dose at the center of an asymmetric square field and a symmetric square field and in-air OAR. For beams of which the measurement point does not agree with the isocenter, as applied to prostate cancer patients, the physical dose calculated using Clarkson integration was corrected with in-air OAR.ResultsThe maximum difference between the physical dose measured at the center of an asymmetric square field and the product of in-air OAR and the physical dose at the center of a symmetric square field was – 0.12%. For beams as applied to prostate cancer patients, the differences between the measured physical doses and the physical doses corrected using in-air OAR were −0.17 ± 0.23%.ConclusionsThe physical dose at the measurement point which does not agree with the isocenter, can be obtained from in-air OAR at the isocenter plane and the physical dose at the center of the SOBP on the beam axis.  相似文献   

15.
PurposeAccelerated partial breast irradiation (APBI) is alternative treatment option for patients with early stage breast cancer. The interplay effect on volumetric modulated arc therapy APBI (VMAT-APBI) has not been clarified. This study aimed to evaluate the feasibility of VMAT-APBI for patients with small breasts and investigate the amplitude of respiratory motion during VMAT-APBI delivery that significantly affects dose distribution.MethodsThe VMAT-APBI plans were generated with 28.5 Gy in five fractions. We performed patient-specific quality assurance using Delta4 phantom under static conditions. We also measured point dose and dose distribution using the ionization chamber and radiochromic film under static and moving conditions of 2, 3 and 5 mm. We compared the measured and calculated point doses and dose distributions by dose difference and gamma passing rates.ResultsA total of 20 plans were generated; the dose distributions were consistent with those of previous reports. For all measurements under static conditions, the measured and calculated point doses and dose distributions showed good agreement. The dose differences for chamber measurement were within 3%, regardless of moving conditions. The mean gamma passing rates with 3%/2 mm criteria in the film measurement under static conditions and with 2 mm, 3 mm, and 5 mm of amplitude were 95.0 ± 2.0%, 93.3 ± 3.3%, 92.1 ± 6.2% and 84.8 ± 7.8%, respectively. The difference between 5 mm amplitude and other conditions was statistically significant.ConclusionsRespiratory management should be considered for the risk of unintended dose distribution if the respiratory amplitude is >5 mm.  相似文献   

16.

Aim

The purpose of the study was to examine the energy dependence of Gafchromic EBT radiochromic dosimetry films, in order to assess their potential use in intensity-modulated radiotherapy (IMRT) verifications.

Materials and methods

The film samples were irradiated with doses from 0.1 to 12 Gy using photon beams from the energy range 1.25 MeV to 25 MV and the film response was measured using a flat-bed scanner. The samples were scanned and the film responses for different beam energies were compared.

Results

A high uncertainty in readout of the film response was observed for samples irradiated with doses lower than 1 Gy. The relative difference exceeds 20% for doses lower than 1 Gy while for doses over 1 Gy the measured film response differs by less than 5% for the whole examined energy range. The achieved uncertainty of the experimental procedure does not reveal any energy dependence of Gafchromic EBT film response in the investigated energy range.

Conclusions

Gafchromic EBT film does not show any energy dependence in the conditions typical for IMRT but the doses measured for pre-treatment plan verifications should exceed 1 Gy.  相似文献   

17.
BackgroundThe dosimetric characterization of volumetric modulated arc therapy (VMAT)-based total-body irradiation (TBI) in pediatric patients is evaluated.Materials and methodsTwenty-two patients between the ages of 2 and 12 years were enrolled for VMAT-based TBI from 2018 to 2020. Three isocenters were irradiated over three overlapping arcs. While prescribing 90% of the TBI dose to the planning treatment volume (PTV), two fractions (2 Gy each) were delivered each day; hence 12 Gy was delivered in six fractions. During treatment optimization, the mean lung and kidney doses were set not to exceed 7 Gy and 7.5 Gy, respectively. The maximum lens dose was also set to less than 4 Gy. Patient quality assurance was carried out by comparing treatment planning system doses to the 3-dimensional measured doses by the ArcCHECK® detector. The electronic portal imaging device (EPID) gamma indices were also obtained.ResultsThe average mean lung dose was 7.75 ± 0.18 Gy, mean kidney dose 7.63 ± 0.26 Gy, maximum lens dose 4.41 ± 0.39 Gy, and the mean PTV dose 12.69 ± 0.16 Gy. The average PTV heterogeneity index was 1.15 ± 0.03. Average differences in mean kidney dose, mean lung dose, and mean target dose were 2.79% ± 0.88, 0.84% ± 0.45 and 0.93% ± 0.47, respectively; when comparing planned and ArcCHECK® measured doses. Only grade 1–2 radiation toxicities were recorded, based on CTCAE v5.0 scoring criteria.ConclusionsVMAT-TBI was characterized with good PTV coverage, homogeneous dose distribution, planned and measured dose agreement, and low toxicity.  相似文献   

18.
AimTo evaluate the success of a patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA) practice for prostate cancer patients across multiple institutions using a questionnaire survey.BackgroundThe IMRT QA practice involves different methods of dose distribution verification and analysis at different institutions.Materials and MethodsTwo full-arc volumetric modulated arc therapy (VMAT) plan and 7 fixed-gantry IMRT plan with DMLC were used for patient specific QA across 22 institutions. The same computed tomography image and structure set were used for all plans. Each institution recalculated the dose distribution with fixed monitor units and without any modification. Single-point dose measurement with a cylindrical ionization chamber and dose distribution verification with a multi-detector or radiochromic film were performed, according to the QA process at each institution.ResultsTwenty-two institutions performed the patient-specific IMRT QA verifications. With a single-point dose measurement at the isocenter, the average difference between the calculated and measured doses was 0.5 ± 1.9%. For the comparison of dose distributions, 18 institutions used a two or three-dimensional array detector, while the others used Gafchromic film. In the γ test with dose difference/distance-to-agreement criteria of 3%?3 mm and 2%?2 mm with a 30% dose threshold, the median gamma pass rates were 99.3% (range: 41.7%–100.0%) and 96.4% (range: 29.4%–100.0%), respectively.ConclusionThis survey was an informative trial to understand the verification status of patient-specific IMRT QA measurements for prostate cancer. In most institutions, the point dose measurement and dose distribution differences met the desired criteria.  相似文献   

19.
Purpose/objectiveStereotactic ablative body radiotherapy (SABR) in multi-centre trials requires rigorous quality assurance to ensure safe and consistent treatment for all trial participants. We report results of vertebral SABR dosimetry credentialing for the ALTG/TROG NIVORAD trial.Material/methodsCentres with a previous SABR site visit performed axial film measurement of the benchmarking vertebral plan in a local phantom and submitted radiochromic film images for analysis. Remaining centres had on-site review of SABR processes and axial film measurement of the vertebral benchmarking plan. Films were analysed for dosimetric and positional accuracy: gamma analysis (>90% passing 2%/2mm/10% threshold) and ≤ 1 mm positional accuracy at target-cord interface was required.Results19 centres were credentialed; 11 had on-site measurement. Delivery devices included linear accelerator, TomoTherapy and CyberKnife systems. Five centres did not achieve 90% gamma passing rate. Of these, three were out of tolerance (OOT) in low (<5Gy) dose regions and > 80% passing rate and deemed acceptable. Two were OOT over the full dose range: one elected not to remeasure; the other also had positional discrepancy greater than 1 mm and repeat measurement with a new plan was in tolerance. The original OOT was attributed to inappropriate MLC constraints. All centres delivered planned target-cord dose gradient within 1 mm.ConclusionCredentialing measurements for vertebral SABR in a multi-centre trial showed although the majority of centres delivered accurate vertebral SABR, there is high value in independent audit measurements. One centre with inappropriate MLC settings was detected, which may have resulted in delivery of clinically unacceptable vertebral SABR plans.  相似文献   

20.
Radiochromic film dosimetry is increasingly used in brachytherapy applications for its higher resolution ability as compared to other experimental methods. The present study was aimed to assess the accuracy and suitability of use of the improved radiochromic film model, Gafchromic EBT2, to evaluate the dose distribution in the transverse plane of microselectron HDR 192Ir source.A specially designed and locally fabricated Polymethyl methacrylate (PMMA) phantom was used in this work for the experimental measurement of dose distribution around the source in its transverse plane. The AAPM TG-43U1 recommended radial dose function, g (r), and dose rate constant, Λ, for the source were measured using Gafchromic EBT2 film and thermoluminescent dosimeters (TLD). The EBT2 film measured dosimetric quantities were validated against their values obtained from the TLD measurements and previously published values for the same source available in literature.The dose rate constant and radial dose function for microselectron HDR 192Ir source obtained from Gafchromic EBT2 film measurements are in agreement with their TLD measured results within 3.9% and 2.8% respectively. They also agree within the accepted range of uncertainty with their experimental and Monte Carlo calculated results reported in literature.This work demonstrates the suitability of using Gafchromic EBT2 film dosimetry in characterization of dose distribution in the transverse plane of HDR Ir-192 source. This is a more efficient method than TLD dosimetry at discrete and distant positions. Relative to TLD dosimetry, it is found to be better reproducible, easy to use and a less expensive method of dosimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号