首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inherited vascular malformations are commonly autosomal dominantly inherited with high, but incomplete, penetrance; they often present as multiple lesions. We hypothesized that Knudson’s two-hit model could explain this multifocality and partial penetrance. We performed a systematic analysis of inherited glomuvenous malformations (GVMs) by using multiple approaches, including a sensitive allele-specific pairwise SNP-chip method. Overall, we identified 16 somatic mutations, most of which were not intragenic but were cases of acquired uniparental isodisomy (aUPID) involving chromosome 1p. The breakpoint of each aUPID is located in an A- and T-rich, high-DNA-flexibility region (1p13.1–1p12). This region corresponds to a possible new fragile site. Occurrences of these mutations render the inherited glomulin variant in 1p22.1 homozygous in the affected tissues without loss of genetic material. This finding demonstrates that a double hit is needed to trigger formation of a GVM. It also suggests that somatic UPID, only detectable by sensitive pairwise analysis in heterogeneous tissues, might be a common phenomenon in human cells. Thus, aUPID might play a role in the pathogenesis of various nonmalignant disorders and might explain local impaired function and/or clinical variability. Furthermore, these data suggest that pairwise analysis of blood and tissue, even on heterogeneous tissue, can be used for localizing double-hit mutations in disease-causing genes.  相似文献   

2.
Many bivalvian mollusks have a sperm-transmitted mitochondrial genome (M), along with the standard egg-transmitted one (F). The phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, is the only known case in which biparental inheritance of a cytoplasmic genome is the rule rather than the exception. In the mussel Mytilus sperm mitochondria disperse randomly among blastomeres in female embryos, but form an aggregate and stay in the same blastomere in male embryos. In adults, somatic tissues of both sexes are dominated by the F genome. Sperm contains only the M genome and eggs the F (and perhaps traces of M). A female produces mostly daughters, mostly sons, or both sexes in about equal numbers, irrespective of its mate. Thus maleness and M mtDNA fate are tightly linked and under maternal control. Hybridization and triploidization affect the former but not the latter, which suggests that the two are not causally linked. Gene content and arrangement are the same in conspecific F and M genomes, but primary sequence has diverged from 20 % to 40 %, depending on species. The two genomes differ at the control region (CR). Synonymous substitutions accumulate faster in the M than the F genome and non-synonymous even faster. Expression studies indicate that the M genome is active only at spermatogenesis. These observations suggest that the M genome is under a more relaxed selective constraint than the F. Some mytilid species carry, in low frequencies, sperm-transmitted mtDNAs whose primary sequence is of the F type and the CR is an F/M mosaic (“masculinized” genomes). In venerids sperm mitochondria behavior, M genome fate and sex determination are as in mytilids. In unionids the M genome also evolves faster than the F and F/M sequence divergence reaches 50 %. The identification of F-specific and M-specific open reading frames in non-coding regions of unionids and mytilids, in conjunction with the CR’s mosaic structure of masculinized genomes, suggest that the mitochondrial genomes of species with DUI carry sequences that affect their transmission route. A model that incorporates these findings is presented in this review.  相似文献   

3.
M. Kirkpatrick  D. Lofsvold    M. Bulmer 《Genetics》1990,124(4):979-993
We present methods for estimating the parameters of inheritance and selection that appear in a quantitative genetic model for the evolution growth trajectories and other "infinite-dimensional" traits that we recently introduced. Two methods for estimating the additive genetic covariance function are developed, a "full" model that fully fits the data and a "reduced" model that generates a smoothed estimate consistent with the sampling errors in the data. By decomposing the covariance function into its eigenvalues and eigenfunctions, it is possible to identify potential evolutionary changes in the population's mean growth trajectory for which there is (and those for which there is not) genetic variation. Algorithms for estimating these quantities, their confidence intervals, and for testing hypotheses about them are developed. These techniques are illustrated by an analysis of early growth in mice. Compatible methods for estimating the selection gradient function acting on growth trajectories in natural or domesticated populations are presented. We show how the estimates for the additive genetic covariance function and the selection gradient function can be used to predict the evolutionary change in a population's mean growth trajectory.  相似文献   

4.
S. B. Lee  J. W. Taylor 《Genetics》1993,134(4):1063-1075
This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mututally exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus.  相似文献   

5.
部分双壳贝类的线粒体遗传方式不同于标准的母系遗传(SMI),被称为双单性遗传现象(DUI)。池蝶蚌(Hyriopsis schlegelii)是淡水双壳贝类,是否存在双单性遗传现象?本文采用普通PCR扩增、SHOT-GUN测序及软件拼接获得了雄性池蝶蚌线粒体基因组(以下简称Hs-mtDNA)全序列,并与本实验室已报道的雌性池蝶蚌线粒体基因组全序列进行差异性分析。结果表明,雄性和雌性Hs-mtDNA全长分别为15961 bp和15939 bp,雄性比雌性长22 bp,雌雄线粒体基因组成与排列顺序一致。各蛋白编码基因的碱基数目均一致,碱基转换率为1.01%~7.34%,颠换率为0.00%~0.62%,氨基酸差异率为0.00%~9.35%;其中,COX1基因变异率为2.72%;COX2基因碱基变异率最高,达7.50%,雄性COX2的3'末端没有出现编码延伸区。雄性12S rRNA基因发生5 bp的碱基转换,差异率为0.6%;16S rRNA基因比雌性长9 bp,碱基差异率仅为1.2%。雌雄tRNA-His均位于H链上,介于COX2与ND3之间,没有出现位置的差异性。雌雄Hs-mtDNA的非编码区共有28个1~393 bp的片段,但未见控制区。在tRNA-Glu与tRNA-Tyr间有一段长393 bp的非编码区存在蛋白质翻译功能,但非雄性特异性蛋白。以COX1基因建立系统进化树,池蝶蚌和三角帆蚌(H.cumingii)聚在一起,而含有双单性遗传现象的无齿蚌属的Pyganodon grandis、小方蚌亚科的Venustaconcha ellipsiformis及小方形蚌属的Quadrula quadrula三者雄性聚为一支,雌性聚为一支。因此,雌雄池蝶蚌线粒体存在一定的差异性,但其差异要比其他具有双单性遗传现象的淡水双壳类小得多,且池蝶蚌线粒体遗传可能不存在双单性遗传现象。  相似文献   

6.
The Manila clam, Ruditapes philippinarum (Adams & Reeve, 1850), is a widespread and commercially important bivalve species showing a peculiar way of mitochondrial inheritance known as Doubly Uniparental Inheritance (DUI), which is different from the strict maternal inheritance found in the broad majority of metazoans. DUI in R. philippinarum was discovered later than in mytilids and unionids. Nevertheless, this case keeps providing interesting data pertinent to the mechanism of this inheritance system. In this review, we discuss the contribution of this species, both in the context of the available knowledge on DUI and in the broader context of metazoan mitochondrial biology. Indeed, thanks to its unusual features, DUI can shed light on mitochondrial inheritance and biogenesis and, above all, on the relationship between mitochondria and germ line. Moreover, DUI is a unique experimental system for studying mitochondrial heteroplasmy, and two processes that shape genome evolution: genomic conflicts and mito-nuclear coevolution, which are at the very root of eukaryotic life.  相似文献   

7.
The unorthodox genetics of the mtDNA is providing new perspectives on the etiology of the common “complex” diseases. The maternally inherited mtDNA codes for essential energy genes, is present in thousands of copies per cell, and has a very high mutation rate. New mtDNA mutations arise among thousands of other mtDNAs. The mechanisms by which these “heteroplasmic” mtDNA mutations come to predominate in the female germline and somatic tissues is poorly understood, but essential for understanding the clinical variability of a range of diseases. Maternal inheritance and heteroplasmy also pose major challengers for the diagnosis and prevention of mtDNA disease.  相似文献   

8.
C. Saavedra  M. I. Reyero    E. Zouros 《Genetics》1997,145(4):1073-1082
We have investigated sex ratio and mitochondrial DNA inheritance in pair-matings involving five female and five male individuals of the Mediterranean mussel Mytilus galloprovincialis. The percentage of male progeny varied widely among families and was found to be a characteristic of the female parent and independent of the male to which it was mated. Thus sex-ratio in Mytilus appears to be independent of the nuclear genotype of the sperm. With a few exceptions, doubly uniparental inheritance (DUI) of mtDNA was observed in all families fathered by four of the five males: female and male progeny contained the mother's mtDNA (the F genome), but males contained also the father's paternal mtDNA (the M genome). Two hermaphrodite individuals found among the progeny of these crosses contained the F mitochondrial genome in the female gonad and both the F and M genomes in the male gonad. All four families fathered by the fifth male showed the standard maternal inheritance (SMI) of animal mtDNA: both female and male progeny contained only the maternal mtDNA. These observations illustrate the intimate linkage between sex and mtDNA inheritance in species with DUI and suggest different major roles for each gender. We propose a model according to which development of a male gonad requires the presence in the early germ cells of an agent associated with sperm-derived mitochondria, these mitochondria are endowed with a paternally encoded replicative advantage through which they overcome their original minority in the fertilized egg and this advantage (and, therefore, the chance of an early entrance into the germ line) is countered by a maternally encoded egg factor.  相似文献   

9.
Inherited mutations in the mitochondrial (mt)DNA are a major cause of human disease, with approximately 1 in 5000 people affected by one of the hundreds of identified pathogenic mtDNA point mutations or deletions. Due to the severe, and often untreatable, symptoms of many mitochondrial diseases, identifying how these mutations are inherited from one generation to the next has been an area of intense research in recent years. Despite large advances in our understanding of this complex process, many questions remain unanswered, with one of the most hotly debated being whether or not purifying selection acts against pathogenic mutations during germline development.  相似文献   

10.
Intrapatient evolution of human immunodeficiency virus type 1 (HIV-1) is driven by the adaptive immune system resulting in rapid change of HIV-1 proteins. When cytotoxic CD8+ T cells or neutralizing antibodies target a new epitope, the virus often escapes via nonsynonymous mutations that impair recognition. Synonymous mutations do not affect this interplay and are often assumed to be neutral. We test this assumption by tracking synonymous mutations in longitudinal intrapatient data from the C2-V5 part of the env gene. We find that most synonymous variants are lost even though they often reach high frequencies in the viral population, suggesting a cost to the virus. Using published data from SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) assays, we find that synonymous mutations that disrupt base pairs in RNA stems flanking the variable loops of gp120 are more likely to be lost than other synonymous changes: these RNA hairpins might be important for HIV-1. Computational modeling indicates that, to be consistent with the data, a large fraction of synonymous mutations in this genomic region need to be deleterious with a cost on the order of 0.002 per day. This weak selection against synonymous substitutions does not result in a strong pattern of conservation in cross-sectional data but slows down the rate of evolution considerably. Our findings are consistent with the notion that large-scale patterns of RNA structure are functionally relevant, whereas the precise base pairing pattern is not.  相似文献   

11.
12.
The mitochondrial genotype of all F1 female offspring (426 individuals) of a single Drosophila mauritiana female, heteroplasmic for two types of mtDNA (a short and a long genome), was established. All descendants were heteroplasmic. The earliest eggs laid by this female show the cytoplasmic genetic structure of ovariole stem cells at the end of development. Cohorts of females from the eggs laid day after day by this female, throughout the 31 days of its life, provide information on the evolution of the mitochondrial genotypes in the course of successive divisions of stem cells. An increase of the percentage of long DNA in offspring was observed as the female aged. Moreover, the variance of the genotypes increases as rounds of stem cell division progress. These results are supported by observations based on the adults issued from the early and late eggs, for three additional heteroplasmic females.  相似文献   

13.
14.
真核生物的线粒体一般具有一定的典型的结构和功能。然而,在单细胞的寄生原生动物中却不断发现从数量、结构到功能均与典型线粒体明显不同的线粒体,表现出线粒体的巨大可塑性和丰富的多样性。该文对寄生原生动物中这些多样的线粒体进行了概述,并对形成这种多样性的根本原因,即这些生物对寄生生活微氧或无氧环境线粒体所发生的种种适应性进化进行了分析探讨。  相似文献   

15.
Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently, physical forces trapped the pathogen for ∼1.5–3 s in “near surface swimming”. This increased the local pathogen density and facilitated “scanning” of the host surface topology. We observed transient TTSS-1 and fim-independent “stopping” and irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are attributable to near surface swimming. This mechanism might be of general importance for understanding infection by flagellated bacteria.  相似文献   

16.
The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria.  相似文献   

17.
18.
P. D. Rawson  C. L. Secor    T. J. Hilbish 《Genetics》1996,144(1):241-248
Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations.  相似文献   

19.
Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.  相似文献   

20.
The relaxin gene family is a group of genes involved in different physiological roles, most of them related to reproduction. In vertebrates the genes in this family are located in three separate chromosomal locations, and have been called relaxin family locus (RFL) A, B, and C. Among mammals the RFLA and RFLC are the most conserved as no gene copy-number variation has been observed thus far. The RFLB locus is also conserved on most mammals other than primates, where there are several gene gains and losses. Interestingly, the relaxin gene found on the RFLB locus in the European rabbit has acquired a novel role. In addition to the classical reproductive roles, this gene is expressed in tracheobronchial epithelial cells and its expression has been linked to squamous differentiation. We reconstructed the evolutionary history of the European rabbit RFLB locus using the tools of comparative genomics and molecular evolution. We found that the European rabbit possess a RFLB locus which is unique among mammals in that there are five tandemly arranged relaxin gene copies, which contrast with the single relaxin copy gene found in most mammals. In addition we also found that the ancestral pre-duplication gene was subject to the action of positive selection, and several amino acid sites were identified under the action of natural selection including the sites B12 and B13 which are part of the receptor recognition and binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号