首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alpha-linolenic acid (LIN) has been shown to provide neuroprotective effects against cerebral ischemia. LIN is a potent activator of TREK-1 channel and LIN-induced neuroprotection disappears in Trek1?/? mice, suggesting that this channel is directly related to the LIN-induced resistance of brain against ischemia. However, the cellular mechanism underlying LIN induced neuroprotective effects after ischemia remains unclear. In this study, using a rat photochemical brain ischemia model, we investigated the effects of LIN on the protein abundance of astrocytic glutamate transporter and AQP4, microglia activation, cell apoptosis and behavioral recovery following ischemia. Administration of LIN rescued the protein abundance of astrocytic glutamate transporter GLT-1, decreased the protein abundance of AQP4 and brain edema, inhibited microglia activation, attenuated cell apoptosis and improved behavioral function recovery. Meanwhile, TREK-1 was widely distributed in the cortex and hippocampus, primarily localized in astrocytes and neurons. LIN could potentiate the TREK-1 mediated astrocytic passive conductance and hyperpolarize the membrane potential. Our results suggest that LIN provides multiple cellular neuroprotective effects in cerebral ischemia. TREK-1 may serve as a promising multi-mechanism therapeutic target for the treatment of stroke.  相似文献   

2.
3.
To investigate the astrocyte response to hypoxia/reoxygenation, as a model relevant to the pathogenesis of ischemic injury, cultured rat astrocytes were exposed to hypoxia. On restoration of astrocytes to normoxia, there was a dramatic increase in protein synthesis within 3 h, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocyte lysates showed multiple induced bands on fluorograms. Levels of cellular ATP declined during the first 3 h of reoxygenation and the concentration of AMP increased to ± 3.6 nmol/mg of protein within 1 h of reoxygenation. Reoxygenated astrocytes generated oxygen free radicals early after replacement into ambient air, and addition of diphenyliodonium, an NADPH oxidase inhibitor, diminished the generation of free radicals as well as the induction of several bands on fluorogram. Although addition of cycloheximide on reoxygenation resulted in inhibition of both astrocyte protein synthesis and accumulation of cellular AMP, it caused cell death within 6 h, suggesting the importance of protein synthesis in adaptation of hypoxic astrocytes to reoxygenation. Potential physiologic significance of biosynthetic products of astrocytes in hypoxia/reoxygenation was suggested by the recovery of glutamate uptake. These results indicate that the astrocyte response to hypoxia/reoxygenation includes generation of oxygen free radicals and de novo synthesis of products that influence cell viability and function in ischemia.  相似文献   

4.

Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood–brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.

  相似文献   

5.
Both interleukin-1beta (IL-1beta) and prostaglandins (PGs) are important mediators of physiological and pathophysiological processes in the brain. PGE2 exerts its effects by binding to four different types of PGE2 receptors named EP1-EP4. EP3 has found to be expressed in neurons, whereas expression of EP3 in glial cells has not been reported in the brain yet. Here we describe IL-1beta-induced EP3 receptor expression in human astrocytoma cells, primary astrocytes of rat and human origin and in rat brain. Using western blot, we found a marked up-regulation of EP3 receptor synthesis in human and rat primary glial cells. Intracerebroventricular administration of IL-1beta stimulated EP3 receptor synthesis in rat hippocampus. The analysis of involved signal transduction pathways by pathway-specific inhibitors revealed an essential role of protein kinase C and nuclear factor-kappaB in astrocytic IL-1beta-induced EP3 synthesis. Our data suggest that PGE2 signaling in the brain may be altered after IL-1beta release due to up-regulation of EP3 receptors. This might play an important role in acute and chronic conditions such as cerebral ischemia, traumatic brain injury, HIV-encephalitis, Alzheimer's disease and prion diseases in which a marked up-regulation of IL-1beta is followed by a prolonged increase of PGE2 levels in the brain.  相似文献   

6.
Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green–fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K+ and Cl channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K2P) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K2P channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K+ effluxes. Additionally, the inhibition of Na+-K+-Cl co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K+ channels (Kir4.1), K2P channels (TREK-1 and TWIK-1) and Cl channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K2P channels.  相似文献   

7.
The TREK-1 channel, the TWIK-1-related potassium (K+) channel, is a member of a family of 2-pore-domain K+ (K2P) channels, through which background or leak K+ currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigate whether intracellular transport is involved in the run-up, we established 293T cell lines stably expressing the TREK-1c channel (K2P2.1) and examined the effects of inhibitors of membrane protein transport, N-methylmaleimide (NEM), brefeldin-A, and an endocytosis inhibitor, pitstop2, on the run-up. The results showing that NEM and brefeldin-A inhibited and pitstop2 facilitated the run-up suggest the involvement of intracellular protein transport. Correspondingly, in cells stably expressing the mCherry-TREK-1 fusion protein, NEM decreased and pitstop2 increased the cell surface localization of the fusion protein. Furthermore, the run-up was inhibited by the intracellular application of a peptide of the C-terminal fragment TREK335–360, corresponding to the interaction site with microtubule-associated protein 2 (Mtap2). This peptide also inhibited the co-immunoprecipitation of Mtap2 with anti-mCherry antibody. The extracellular application of an ezrin inhibitor (NSC668394) also suppressed the run-up and surface localization of the fusion protein. The co-application of these inhibitors abolished the TREK-1c current, suggesting that the additive effects of ezrin and Mtap2 enhance the surface expression of TREK-1c channels and the run-up. These findings clearly showed the involvement of intracellular transport in TREK-1c current run-up and its mechanism.  相似文献   

8.
Several studies showed that the up-regulation of glial glutamate transporter-1 (GLT-1) participates in the acquisition of brain ischemic tolerance induced by cerebral ischemic preconditioning or ceftriaxone pretreatment in rats. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance induced by intermittent hypobaric hypoxia (IH) preconditioning (mimicking 5,000?m high-altitude, 6?h per day, once daily for 28?days), immunohistochemistry and western blot were used to observe the changes in the expression of GLT-1 protein in hippocampal CA1 subfield during the induction of brain ischemic tolerance by IH preconditioning, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of brain ischemic tolerance in rats. The basal expression of GLT-1 protein in hippocampal CA1 subfield was significantly up-regulated by IH preconditioning, and at the same time astrocytes were activated by IH preconditioning, which appeared normal soma and aplenty slender processes. The GLT-1 expression was decreased at 7?days after 8-min global brain ischemia. When the rats were pretreated with the IH preconditioning before the global brain ischemia, the down-regulation of GLT-1 protein was prevented clearly. Neuropathological evaluation by thionin staining showed that 200?nmol DHK blocked the protective role of IH preconditioning against delayed neuronal death induced normally by 8-min global brain ischemia. Taken together, the up-regulation of GLT-1 protein participates in the acquisition of brain ischemic tolerance induced by IH preconditioning in rats.  相似文献   

9.
Astrocytes aged in vitro show a decreased neuroprotective capacity   总被引:3,自引:0,他引:3  
Alterations in astrocyte function that may affect neuronal viability occur with brain aging. In this study, we evaluate the neuroprotective capacity of astrocytes in an experimental model of in vitro aging. Changes in oxidative stress, glutamate uptake and protein expression were evaluated in rat cortical astrocytes cultured for 10 and 90 days in vitro (DIV). Levels of glial fibrillary acidic protein and S100beta increased at 90 days when cells were positive for the senescence beta-galactosidase marker. In long-term astrocyte cultures, the generation of reactive oxygen species was enhanced and mitochondrial activity decreased. Simultaneously, there was an increase in proteins that stained positively for nitrotyrosine. The expression of Cu/Zn-superoxide dismutase (SOD-1) and haeme oxygenase-1 (HO-1) proteins and inducible nitric oxide synthase (iNOS) increased in aged astrocytes. Glutamate uptake in 90-DIV astrocytes was higher than in 10 DIV ones, and was more vulnerable to inhibition by H2O2 exposure. Enhanced glutamate uptake was probably because of up-regulation of the glutamate/aspartate transporter protein. Aged astrocytes had a reduced ability to maintain neuronal survival. These findings indicate that astrocytes may partially loose their neuroprotective ability during aging. The results also suggest that aged astrocytes may contribute to exacerbating neuronal injury in age-related neurodegenerative processes.  相似文献   

10.
Thermosensitive transient receptor potential (thermo TRP) channels are important for sensory transduction. Among them, TRPV2 has an interesting characteristic of being activated by very high temperature (>52 °C). In addition to the heat sensor function, TRPV2 also acts as a mechanosensor, an osomosensor and a lipid sensor. It has been reported that TRPV2 is expressed in heart, intestine, pancreas and sensory nerves. In the central nervous system, neuronal TRPV2 expression was reported, however, glial expression and the precise roles of TRPV2 have not been determined. To explore the functional expression of TRPV2 in astrocytes, the expression was determined by histological and physiological methods. Interestingly, TRPV2 expression was detected in plasma membrane of astrocytes, and the astrocytic TRPV2 was activated by very high temperature (>50 °C) consistent with the reported characteristic. We revealed that the astrocytic TRPV2 was also activated by lysophosphatidylcholine, a known endogenous lipid ligand for TRPV2, suggesting that astrocytic TRPV2 might regulate neuronal activities in response to lipid metabolism. Thus, for the first time we revealed that TRPV2 is functionally expressed in astrocytes in addition to neurons.  相似文献   

11.
Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin‐A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin‐A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin‐A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up‐regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin‐A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus‐dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4‐mediated ephrin‐A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions.

  相似文献   


12.
Abstract: To investigate isoform-specific roles of Ca2+/calmodulin-dependent phosphatase [calcineurin (CaN)] in ischemia-induced cell death, we raised antibodies specific to CaN Aα and CaN Aβ and localized the CaN isoforms in the hippocampal CA1 region of Mongolian gerbils subjected to a 5-min occlusion of carotid arteries. In the nonischemic gerbil, immunoreactions of both isoforms were highly enriched in CA1 regions, especially in the cytoplasm and apical dendrites of CA1 pyramidal neurons. At 4–7 days after the induced ischemia, immunoreactivities of the CaN Aα isoform in CA1 pyramidal cells were markedly reduced, whereas they were enhanced in the CA1 radiatum and oriens layers. In contrast, CaN Aβ immunoreactivities were reduced in all layers of the ischemic CA1 region, whereas they were enhanced in activated astrocytes, colocalizing with glial fibrillary acidic protein. These findings suggest that up-regulation of CaN Aα in afferent fibers in CA1 and up-regulation of CaN Aβ in reactive astrocytes may be involved in neuronal reorganization after ischemic injury.  相似文献   

13.
The long-term impacts of cerebral ischemia and diabetic ischemia on astrocytes and oligodendrocytes have not been defined. The objective of this study is to define profile of astrocyte and changes of myelin in diabetic and non-diabetic rats subjected to focal ischemia.Focal cerebral ischemia of 30-min duration was induced in streptozotocin-induced diabetic and vehicle-injected normoglycemic rats. The brains were harvested for immunohistochemistry of glial fibrillary acidic protein (GFAP) and 2'', 3''-cyclic nucleotide 3''-phosphodiesterase (CNPase) at various reperfusion endpoints ranging from 30 min up to 28 days. The results showed that activate astrocytes were observed after 30 min and peaked at 3 h to 1 day after reperfusion in ischemic penumbra, and peaked at 7 days of reperfusion in ischemic core. Diabetes inhibited the activation of astrocytes in ischemic hemisphere. Demyelination occurred after 30 min of reperfusion in ischemic core and peaked at 1 day. Diabetes caused more severe demyelination compared with non-diabetic rats. Remyelination started at 7 days and completed at 14 and 28 days in ischemic region. Diabetes inhibited the remyelination processes. It is concluded that ischemia activates astrocytes and induces demyelination. Diabetes inhibits the activation of astrocytes, exacerbates the demyelination and delays the remyelination processes. These may contribute to the detrimental effects of hyperglycemia on ischemic brain damage.  相似文献   

14.
Spontaneous Ca2+ oscillations are believed to contribute to the regulation of gene expression. Here we investigated whether and how the dynamics of Ca2+ oscillations changed after sublethal preconditioning (PC) for PC-induced ischemic tolerance in neuron/astrocyte co-cultures. The frequency of spontaneous Ca2+ oscillations significantly decreased between 4 and 8 h after the end of PC in both neurons and astrocytes. Treatment with 2-APB, an inhibitor of IP3 receptors, decreased the oscillatory frequency, induced ischemic tolerance and a down-regulation of glutamate transporter GLT-1 contributing to the increase in the extracellular glutamate during ischemia. The expression of GLT-1 is known to be up-regulated by PACAP. Treatment with PACAP38 increased the oscillatory frequency, and antagonized both the PC-induced down-regulation of GLT-1 and ischemic tolerance. These results suggested that the PC suppressed the spontaneous Ca2+ oscillations regulating the gene expressions of various proteins, especially of astrocytic GLT-1, for the development of the PC-induced ischemic tolerance.  相似文献   

15.
To determine the gene(s) induced by hypertonicity in the brain, we performed a differential display analysis using RNA isolated from isotonic and hypertonic rat astrocytes. One cDNA rapidly up-regulated by hypertonicity was isolated, and the DNA sequence revealed that it was identical to adenine nucleotide translocator (ANT)2. ANT2 protein exchanges intramitochondrial ATP for cytoplasmic ADP. Among three ANT isoforms, only ANT2 mRNA was up-regulated markedly from 1 to 4 h after exposure to hypertonicity. Induction of the mRNA did not require de novo protein synthesis. Furthermore, ADP translocase activity in mitochondria of astrocytes was increased significantly by hypertonicity. To see the localization and regulation of ANT2 mRNA in the brain, we performed in situ hybridization of rat brain after intraperitoneal injection of a high concentration of NaCl. Although there were only weak signals in the control, intense hybridization signals were seen in hypertonic rat whole brain. Microscopic examination showed that ANT2 signals were present in the neurons, as well as glial cells. These results suggest that ANT2 may play a role in brain cells to adapt to the hypertonic environment.  相似文献   

16.

Background

Glutamate (Glu) and γ-aminobutyric acid (GABA) transporters play important roles in regulating neuronal activity. Glu is removed from the extracellular space dominantly by glial transporters. In contrast, GABA is mainly taken up by neurons. However, the glial GABA transporter subtypes share their localization with the Glu transporters and their expression is confined to the same subpopulation of astrocytes, raising the possibility of cooperation between Glu and GABA transport processes.

Methodology/Principal Findings

Here we used diverse biological models both in vitro and in vivo to explore the interplay between these processes. We found that removal of Glu by astrocytic transporters triggers an elevation in the extracellular level of GABA. This coupling between excitatory and inhibitory signaling was found to be independent of Glu receptor-mediated depolarization, external presence of Ca2+ and glutamate decarboxylase activity. It was abolished in the presence of non-transportable blockers of glial Glu or GABA transporters, suggesting that the concerted action of these transporters underlies the process.

Conclusions/Significance

Our results suggest that activation of Glu transporters results in GABA release through reversal of glial GABA transporters. This transporter-mediated interplay represents a direct link between inhibitory and excitatory neurotransmission and may function as a negative feedback combating intense excitation in pathological conditions such as epilepsy or ischemia.  相似文献   

17.
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.  相似文献   

18.
Although mRNA expression of group IIA secretory phospholipase A2 (sPLA2-IIA) has been implicated in responses to injury in the CNS, information on protein expression remains unclear. In this study, we investigated temporal and spatial expression of sPLA2-IIA mRNA and immunoreactivity in transient focal cerebral ischemia induced in rats by occlusion of the middle cerebral artery. Northern blot analysis showed a biphasic increase in sPLA2-IIA mRNA expression following 60-min of ischemia-reperfusion: an early phase at 30 min and a second increase at a late phase ranging from 12 h to 14 days. In situ hybridization localized the early-phase increase in sPLA2-IIA mRNA to the affected ischemic cortex and the late-phase increase to the penumbral area. Besides sPLA2-IIA mRNA, glial fibrillary acidic protein (GFAP) and cyclo-oxygenase-2 mRNAs, but not cytosolic PLA2, also showed an increase in the penumbral area at 3 days after ischemia-reperfusion. Immunohistochemistry of sPLA2-IIA indicated positive cells in the penumbral area similar to the GFAP-positive astrocytes but different from the isolectin B4-positive microglial cells. Confocal microscopy further confirmed immunoreactivity of sPLA2-IIA in reactive astrocytes but not in microglial cells. Taken together, these results demonstrate for the first time an up-regulation of the inflammatory sPLA2-IIA in reactive astrocytes in response to cerebral ischemia-reperfusion.  相似文献   

19.
20.
To further explore the pathophysiological significance of arachidonic acid-sensitive potassium channels, RT-PCR and Western blot analysis were used to investigate the expression changes of TREK channels in cortex and hippocampus in rat experimental acute cerebral ischemia in this study. Results showed that TREK-1 and TRAAK mRNA in cortex, TREK-1 and TREK-2 mRNA in hippocampus showed significant increases 2 h after middle cerebral artery occlusion (MCAO). While the mRNA expression levels of the all three channel subtypes increased significantly 24 h after MCAO in cortex and hippocampus. At the same time, the protein expressions of all the three channel proteins showed significant increase 24 h after MCAO in cortex and hippocampus, but only TREK-1 showed increased expression 2 h after MCAO in cortex and hippocampus. Immunohistochemical experiments verified that all the three channel proteins had higher expression levels in cortical and hippocampal neurons 24 h after MCAO. These results suggested a strong correlation between TREK channels and acute cerebral ischemia. TREK channels might provide a neuroprotective mechanism in the pathological process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号