首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Papillary thyroid cancer (PTC) accounts for the majority of malignant thyroid tumors. Recently, several microRNA (miRNA) expression profiling studies have used bioinformatics to suggest miRNA signatures as potential prognostic biomarkers in various malignancies. However, a prognostic miRNA biomarker has not yet been established for PTC. The aim of the present study was to identify miRNAs with prognostic value for the overall survival (OS) of patients with PTC by analyzing high-throughput miRNA data and their associated clinical characteristics downloaded from The Cancer Genome Atlas database. From our dataset, 150 differentially expressed miRNAs were identified between tumor and nontumor samples; of these miRNAs, 118 were upregulated and 32 were downregulated. Among the 150 differentially expressed miRNAs, a four miRNA signature was identified that reliably predicts OS in patients with PTC. This miRNA signature was able to classify patients into a high-risk group and a low-risk group with a significant difference in OS (P < .01). The prognostic value of the signature was validated in a testing set ( P < .01). The four miRNA signature was an independent prognostic predictor according to the multivariate analysis and demonstrated good performance in predicting 5-year disease survival with an area under the receiver operating characteristic curve area under the curve (AUC) score of 0.886. Thus, this signature may serve as a novel biomarker for predicting the survival of patients with PTC.  相似文献   

2.
3.
4.
A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA).  相似文献   

5.
MicroRNAs (miRNAs) play an important role in a variety of physiological as well as pathophysiological processes, including carcinogenesis. The aim of this study is to identify a distinct miRNA expression signature for cervical intraepithelial neoplasia (CIN) and to unveil individual miRNAs that may be involved in the development of cervical carcinoma. Expression profiling using quantitative real-time RT-PCR of 202 miRNAs was performed on micro-dissected high-grade CIN (CIN 2/3) tissues and compared to normal cervical epithelium. Unsupervised hierarchical clustering of the miRNA expression pattern displayed a distinct separation between the CIN and normal cervical epithelium samples. Supervised analysis identified 12 highly differentially regulated miRNAs, including miR-518a, miR-34b, miR-34c, miR-20b, miR-338, miR-9, miR-512-5p, miR-424, miR-345, miR-10a, miR-193b and miR-203, which distinguished the high-grade CIN specimens from normal cervical epithelium. This miRNA signature was further validated by an independent set of high-grade CIN cases. The same characteristic signature can also be used to distinguish cervical squamous cell carcinoma from normal controls. Target prediction analysis revealed that these dysregulated miRNAs mainly control apoptosis signaling pathways and cell cycle regulation. These findings contribute to understanding the role of microRNAs in the pathogenesis and progression of cervical neoplasm at the molecular level.  相似文献   

6.
7.
Next generation sequencing (NGS) is an emerging technology becoming relevant for genotyping of clinical samples. Here, we assessed the stability of amplicon sequencing from formalin-fixed paraffin-embedded (FFPE) and paired frozen samples from colorectal cancer metastases with different analysis pipelines. 212 amplicon regions in 48 cancer related genes were sequenced with Illumina MiSeq using DNA isolated from resection specimens from 17 patients with colorectal cancer liver metastases. From ten of these patients, paired fresh frozen and routinely processed FFPE tissue was available for comparative study. Sample quality of FFPE tissues was determined by the amount of amplifiable DNA using qPCR, sequencing libraries were evaluated using Bioanalyzer. Three bioinformatic pipelines were compared for analysis of amplicon sequencing data. Selected hot spot mutations were reviewed using Sanger sequencing. In the sequenced samples from 16 patients, 29 non-synonymous coding mutations were identified in eleven genes. Most frequent were mutations in TP53 (10), APC (7), PIK3CA (3) and KRAS (2). A high concordance of FFPE and paired frozen tissue samples was observed in ten matched samples, revealing 21 identical mutation calls and only two mutations differing. Comparison of these results with two other commonly used variant calling tools, however, showed high discrepancies. Hence, amplicon sequencing can potentially be used to identify hot spot mutations in colorectal cancer metastases in frozen and FFPE tissue. However, remarkable differences exist among results of different variant calling tools, which are not only related to DNA sample quality. Our study highlights the need for standardization and benchmarking of variant calling pipelines, which will be required for translational and clinical applications.  相似文献   

8.
9.
MicroRNAs (miRNAs) contribute to cancer initiation and progression by silencing the expression of their target genes, causing either mRNA molecule degradation or translational inhibition. Intraductal epithelial proliferations of the breast are histologically and clinically classified into normal, atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). To better understand the progression of ductal breast cancer development, we attempt to identify deregulated miRNAs in this process using Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from breast cancer patients. Following tissue microdissection, we obtained 8 normal, 4 ADH, 6 DCIS and 7 IDC samples, which were subject to RNA isolation and miRNA expression profiling analysis. We found that miR-21, miR-200b/c, miR-141, and miR-183 were consistently up-regulated in ADH, DCIS and IDC compared to normal, while miR-557 was uniquely down-regulated in DCIS. Interestingly, the most significant miRNA deregulations occurred during the transition from normal to ADH. However, the data did not reveal a step-wise miRNA alteration among discrete steps along tumor progression, which is in accordance with previous reports of mRNA profiling of different stages of breast cancer. Furthermore, the expression of MSH2 and SMAD7, two important molecules involving TGF-β pathway, was restored following miR-21 knockdown in both MCF-7 and Hs578T breast cancer cells. In this study, we have not only identified a number of potential candidate miRNAs for breast cancer, but also found that deregulation of miRNA expression during breast tumorigenesis might be an early event since it occurred significantly during normal to ADH transition. Consequently, we have demonstrated the feasibility of miRNA expression profiling analysis using archived FFPE tissues, typically with rich clinical information, as a means of miRNA biomarker discovery.  相似文献   

10.

Background and Methods

Formalin Fixed Paraffin Embedded (FFPE) samples represent a valuable resource for cancer research. However, the discovery and development of new cancer biomarkers often requires fresh frozen (FF) samples. Recently, the Whole Genome (WG) DASL (cDNA-mediated Annealing, Selection, extension and Ligation) assay was specifically developed to profile FFPE tissue. However, a thorough comparison of data generated from FFPE RNA and Fresh Frozen (FF) RNA using this platform is lacking. To this end we profiled, in duplicate, 20 FFPE tissues and 20 matched FF tissues and evaluated the concordance of the DASL results from FFPE and matched FF material.

Methodology and Principal Findings

We show that after proper normalization, all FFPE and FF pairs exhibit a high level of similarity (Pearson correlation >0.7), significantly larger than the similarity between non-paired samples. Interestingly, the probes showing the highest correlation had a higher percentage G/C content and were enriched for cell cycle genes. Predictions of gene expression signatures developed on frozen material (Intrinsic subtype, Genomic Grade Index, 70 gene signature) showed a high level of concordance between FFPE and FF matched pairs. Interestingly, predictions based on a 60 gene DASL list (best match with the 70 gene signature) showed very high concordance with the MammaPrint® results.

Conclusions and Significance

We demonstrate that data generated from FFPE material with the DASL assay, if properly processed, are comparable to data extracted from the FF counterpart. Specifically, gene expression profiles for a known set of prognostic genes for a specific disease are highly comparable between two conditions. This opens up the possibility of using both FFPE and FF material in gene expressions analyses, leading to a vast increase in the potential resources available for cancer research.  相似文献   

11.

Background

A previously reported expression signature of three genes (IGFBP3, F3 and VGLL3) was shown to have potential prognostic value in estimating overall and cancer-specific survivals at diagnosis of prostate cancer in a pilot cohort study using freshly frozen Fine Needle Aspiration (FNA) samples.

Methods

We carried out a new cohort study with 241 prostate cancer patients diagnosed from 2004–2007 with a follow-up exceeding 6 years in order to verify the prognostic value of gene expression signature in formalin fixed paraffin embedded (FFPE) prostate core needle biopsy tissue samples. The cohort consisted of four patient groups with different survival times and death causes. A four multiplex one-step RT-qPCR test kit, designed and optimized for measuring the expression signature in FFPE core needle biopsy samples, was used. In archive FFPE biopsy samples the expression differences of two genes (IGFBP3 and F3) were measured. The survival time predictions using the current clinical parameters only, such as age at diagnosis, Gleason score, PSA value and tumor stage, and clinical parameters supplemented with the expression levels of IGFBP3 and F3, were compared.

Results

When combined with currently used clinical parameters, the gene expression levels of IGFBP3 and F3 are improving the prediction of survival time as compared to using clinical parameters alone.

Conclusion

The assessment of IGFBP3 and F3 gene expression levels in FFPE prostate cancer tissue would provide an improved survival prediction for prostate cancer patients at the time of diagnosis.  相似文献   

12.
miRNA profiling for diagnosis and prognosis of human cancer   总被引:6,自引:0,他引:6  
MicroRNAs (miRNAs) are a recently discovered class of small (approximately 18-24 nt) nucleic acids that negatively regulate gene expression. This novel class of molecules modulates a wide array of growth and differentiation processes in human cancers. High throughput analyses, utilizing the solid phase, array platform, or liquid phase, bead-based hybridization have variously demonstrated that miRNA expression was commonly dysregulated in human cancer. miRNA expression profiling has shown promise in defining malignant status in retrospective studies. Considerable disagreement remains with respect to the miRNA signature for a specific cancer cell type, which appears to depend largely on the analytical platform. Nonetheless, various internally controlled studies have successfully identified the histotype of tumors of unknown origin according to miRNA expression profile. The evaluation of miRNAs expression may also be of prognostic value, as best exemplified by the correlation of let-7 and mir-155 levels with disease survival in nonsmall cell lung cancer.  相似文献   

13.
As essential regulators of gene expression, miRNAs are engaged in the initiation and progression of colorectal cancer (CRC), including antitumour immune response. In this study, we proposed an integrated algorithm, ImmuMiRNA, for identifying miRNA modulators of immune-associated pathways. Based on these immune-associated miRNAs, we applied the LASSO algorithm to develop a reliable and individualized signature for evaluating overall survival (OS) and inflammatory landscape of CRC patients. An external public data set and qRT-PCR data from 40 samples were further utilized to validate this signature. As a result, an immune-associated miRNA prognostic signature (IAMIPS) consisting of three miRNAs (miR-194-3P, miR-216a-5p and miR-3677-3p) was established and validated. Patients in the high-risk group possessed worse OS. After stratification for clinical factors, the signature remained a powerful independent predictor for OS. IAMIPS displayed much better accuracy than the traditional clinical stage in assessing the prognosis of CRC. Further analysis revealed that patients in the high-risk group were characterized by inflammatory response, abundance immune cell infiltration, and higher immune checkpoint profiles and tumour mutation burden (TMB). In conclusion, the IAMIPS is highly predictive of OS in patients with CRC, which may serve as a powerful prognostic tool to further optimize immunotherapies for cancer.  相似文献   

14.
We have prepared the map of regional distribution of cervical cancer in Hungary. Serial HPV genotyping of sexual partners provided evidence for the sexually transmitted infections. Molecular epidemiology studies revealed activating c-kit mutation in bilateral testicular cancers. A cost-effective molecular staging method was introduced to the management of breast cancer patients. Genomic profiling identified the gene signature of Herceptin and taxane sensitivity of breast cancer. In colon cancer patients we have determined the mutational spectrum of hMLH1 and hMSH2 genes in Hungary. The prognostic power of SHMT and MTHFR polymorphism was determined in colorectal cancer patients. In head and neck cancer the gene signature of cisplatin sensitivity and the EGFR polymorphism was determined. We have introduced a cost-effective in vitro assay to determine the drug resistance of pediatric leukemias. The prognostic power of N-myc genotyping was determined in neuroblastoma patients. A phase I trial for gene therapy of brain cancer was started by using a GM-CSF adenoviral vector system. Using global genomic approaches the gene signature of malignant melanoma and its metastatic disease was determined. We have found that Ca-channel blockers and EGFR tyrosine kinase inhibitors are effective in preclinical human melanoma models in breaking the apoptosis resistance of this tumor.  相似文献   

15.
16.
Since brain tissue is not readily accessible, a new focus in search of biomarkers for schizophrenia is blood-based expression profiling of non-protein coding genes such as microRNAs (miRNAs), which regulate gene expression by inhibiting the translation of messenger RNAs. This study aimed to identify potential miRNA signature for schizophrenia by comparing genome-wide miRNA expression profiles in patients with schizophrenia vs. healthy controls. A genome-wide miRNA expression profiling was performed using a Taqman array of 365 human miRNAs in the mononuclear leukocytes of a learning set of 30 cases and 30 controls. The discriminating performance of potential biomarkers was validated in an independent testing set of 60 cases and 30 controls. The expression levels of the miRNA signature were then evaluated for their correlation with the patients'' clinical symptoms, neurocognitive performances, and neurophysiological functions. A seven-miRNA signature (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) was derived from a supervised classification with internal cross-validation, with an area under the curve (AUC) of receiver operating characteristics of 93%. The putative signature was then validated in the testing set, with an AUC of 85%. Among these miRNAs, miR-34a was differentially expressed between cases and controls in both the learning (P = 0.005) and the testing set (P = 0.002). These miRNAs were differentially correlated with patients'' negative symptoms, neurocognitive performance scores, and event-related potentials. The results indicated that the mononuclear leukocyte-based miRNA profiling is a feasible way to identify biomarkers for schizophrenia, and the seven-miRNA signature warrants further investigation.  相似文献   

17.
A number of reports have recently emerged with focus on extraction of proteins from formalin‐fixed paraffin‐embedded (FFPE) tissues for MS analysis; however, reproducibility and robustness as compared to flash frozen controls is generally overlooked. The goal of this study was to identify and validate a practical and highly robust approach for the proteomics analysis of FFPE tissues. FFPE and matched frozen pancreatic tissues obtained from mice (n = 8) were analyzed using 1D‐nanoLC‐MS(MS)2 following work up with commercially available kits. The chosen approach for FFPE tissues was found to be highly comparable to that of frozen. In addition, the total number of unique peptides identified between the two groups was highly similar, with 958 identified for FFPE and 1070 identified for frozen, with protein identifications that corresponded by approximately 80%. This approach was then applied to archived human FFPE pancreatic cancer specimens (n = 11) as compared to uninvolved tissues (n = 8), where 47 potential pancreatic ductal adenocarcinoma markers were identified as significantly increased, of which 28 were previously reported. Further, these proteins share strongly overlapping pathway associations to pancreatic cancer that include estrogen receptor α. Together, these data support the validation of an approach for the proteomic analysis of FFPE tissues that is straightforward and highly robust, which can also be effectively applied toward translational studies of disease.  相似文献   

18.
Nasopharyngeal cancer is one of the most common malignant tumors in the head and neck. Identification of promising miRNA biomarkers might benefit a lot to the detection of nasopharyngeal carcinoma. miRNA expression profile and clinical information were obtained from two microarray profiling data sets from the Gene Expression Omnibus (GEO) database. miRNA signature model was constructed via univariate Cox survival analysis, multivariate Cox survival analysis, and least absolute shrinkage and selection operator Cox regression analysis. Kaplan–Meier curve, area under the curve (AUC), decision curve analysis, Box plot, and nomogram were used to evaluate the prognosis of the model to patients. 67 up-regulated and 93 down-regulated miRNAs were identified from GEO microarray data sets (P < 0.05). A three-miRNA signature (has-miR-142-3p, has-miR-29c, and has-miR-30e) was obviously associated with the overall survival of nasopharyngeal carcinoma patients (P  < 0.001). The AUCs for the signature were 0.74, 0.7 for the training set and external validation set. The AUC of disease free survival and distant metastasis-free survival were also high. The model has better clinical independence and has better clinical prediction effect when combined with clinical characteristics (P < 0.0001). Compared with the published models, our model had a higher AUC. Our results revealed that a three-miRNA signature was a potential novel prognostic biomarker for nasopharyngeal carcinoma.Impact statementNasopharyngeal cancer is one of the most common malignant tumors in the head and neck. Identification of promising miRNA biomarkers might benefit a lot to the detection of nasopharyngeal carcinoma. A three-miRNA signature (has-miR-142-3p, has-miR-29c, and has-miR-30e) was obviously associated with the overall survival of nasopharyngeal carcinoma patients. The model has better clinical independence and has better clinical prediction effect when combined with clinical characteristics. Our results revealed that a three-miRNA signature was a potential novel prognostic biomarker for nasopharyngeal carcinoma.  相似文献   

19.
Genome-wide platforms for high-throughput profiling of circulating miRNA (oligoarray or miR-Seq) offer enormous promise for agnostic discovery of circulating miRNA biomarkers as a pathway for development in breast cancer detection. By harmonizing data from 15 previous reports, we found widespread inconsistencies across prior studies. Whether this arises from differences in study design, such as sample source or profiling platform, is unclear. As a reproducibility experiment, we generated a genome-wide plasma miRNA dataset using the Illumina oligoarray and compared this to a publically available dataset generated using an identical sample size, substrate and profiling platform. Samples from 20 breast cancer patients, 20 mammography-screened controls, as well as 20 breast cancer patients after surgical resection and 10 female lung or colorectal cancer patients were included. After filtering for miRNAs derived from blood cells, and for low abundance miRNAs (non-detectable in over 10% of samples), a set of 522 plasma miRNAs remained, of which 46 were found to be differentially expressed between breast cancer patients and healthy controls (p<0.05), of which only 3 normalized to baseline levels in post-resection cases and were unique to breast cancer vs. lung or colorectal cancer (miR-708*, miR-92b* and miR-568, none previously reported). We were unable to demonstrate reproducibility by various measures between the two datasets. This finding, along with widespread inconsistencies across prior studies, highlight the need for better understanding of factors influencing circulating miRNA levels as prerequisites to progress in this area of translational research.  相似文献   

20.
MicroRNAs (miRNAs) have a major impact on regulatory networks in human carcinogenesis. In this study, we sought to investigate the prognostic significance of miRNAs in patients with oral cavity squamous cell carcinoma (OSCC). In a discovery phase, RNA was extracted from 58 OSCC tumor samples and paired normal tissues. MiRNAs expression was evaluated with TaqMan Array Card and TaqMan MicroRNA assays. The prognostic significance of the miRNA signature identified in the discovery phase was validated by qRT-PCR in a replication set consisting of 141 formalin-fixed, paraffin-embedded (FFPE) samples. We identified a miRNA regulatory network centered on the three hub genes (SP1, MYC, and TP53) that predicted distinct clinical endpoints. Three miRNAs (miR-218, miR-125b, and let-7g) and their downstream response genes had a concordant prognostic significance on disease-free survival and disease-specific survival rates. In addition, patients with a reduced expression of miR-218, miR-125b, and let-7g have a higher risk of poor outcomes in presence of specific risk factors (p-stage III-IV, pT3-4, or pN+). Our findings indicate that specific miRNAs have prognostic significance in OSCC patients and may improve prognostic stratification over traditional risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号