首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
PurposeThe exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR).MethodThe proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods.ResultsDecomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms.ConclusionIt is demonstrated that the combination of the additional information from Spectral CT and statistical reconstruction can significantly improve image quality, especially streaking artifacts caused by the presence of materials with high atomic numbers.  相似文献   

2.
ABSTRACT: BACKGROUND: In sparse-view CT imaging, strong streak artifacts may appear around bony structures and they often compromise the image readability. Compressed sensing (CS) or total variation (TV) minimization-based image reconstruction method has reduced the streak artifacts to a great extent, but, sparse-view CT imaging still suffers from residual streak artifacts. We introduce a new bone-induced streak artifact reduction method in the CS-based image reconstruction. METHODS: We firstly identify the high-intensity bony regions from the image reconstructed by the filtered backprojection (FBP) method, and we calculate the sinogram stemming from the bony regions only. Then, we subtract the calculated sinogram, which stands for the bony regions, from the measured sinogram before performing the CS-based image reconstruction. The image reconstructed from the subtracted sinogram will stand for the soft tissues with little streak artifacts on it. To restore the original image intensity in the bony regions, we add the bony region image, which has been identified from the FBP image, to the soft tissue image to form a combined image. Then, we perform the CS-based image reconstruction again on the measured sinogram using the combined image as the initial condition of the iteration. For experimental validation of the proposed method, we take images of a contrast phantom and a rat using a micro-CT and we evaluate the reconstructed images based on two figures of merit, relative mean square error and total variation caused by the streak artifacts. RESULTS: The images reconstructed by the proposed method have been found to have smaller streak artifacts than the ones reconstructed by the original CS-based method when visually inspected. The quantitative image evaluation studies have also shown that the proposed method outperforms the conventional CS-based method. CONCLUSIONS: The proposed method can effectively suppress streak artifacts stemming from bony structures in sparse-view CT imaging.  相似文献   

3.
PurposeNon-local means (NLM) based reconstruction method is a promising algorithm for few-view computed tomography (CT) reconstruction, but often suffers from over-smoothed image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (ART-RIANLM) is proposed.MethodsThe method consists of four steps: 1) Initializing parameters; 2) ART reconstruction using raw data; 3) Positivity constraint of the reconstructed image; 4) Image updating by RIANLM filtering. In RIANLM, two kinds of rotational invariance measures which are average gradient (AG) and region homogeneity (RH) are proposed to calculate the distance between two patches and a novel NLM filter is developed to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it is constant in NLM during the whole reconstruction process. The proposed method is validated on two digital phantoms and real projection data.ResultsIn our experiments, the searching neighborhood size is set as 15 × 15 and the similarity window is set as 3 × 3. For the simulated case of Shepp-Logan phantom, ART-RIANLM produces higher SNR (36.23 dB > 24.00 dB) and lower MAE (0.0006 < 0.0024) reconstructed images than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and recover image edges better. The result of real data case is also consistent with the simulation result.ConclusionsA RIANLM based reconstruction method for few-view CT is presented. Compared to the traditional ART-NLM method, SNR and MAE from ART-RIANLM increases 51% and decreases 75%, respectively.  相似文献   

4.
PurposeTo investigate whether a newly-developed single-energy metal artifact reduction (SEMAR) algorithm applied to images acquired on a 320-MDCT volume scanner reduces image artifacts from dental metal.MethodsWe inserted the lower right teeth covered with a dental metal alloy and crown in a skull phantom and performed single-volume scanning on a second-generation 320-MDCT scanner. A 12-mm diameter spherical lesion was placed either close to or far from the dental metal. The tube voltage and current were 120 kVp and 80 or 155 mA, respectively. Images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR), with or without SEMAR. We calculated the signal-to-artifact ratios (SAR) to quantify the visibility of the lesion. Two radiologists inspected 96 images (48 with lesion and 48 without) for the presence or absence of the lesion using a 5-point ordinal scale (1 = definitely absent to 5 = definitely present).ResultsOn images reconstructed with FPB and IR with SEMAR, streak artifacts from the dental metal were reduced substantially compared to images without SEMAR. At 155 mA with the lesion near the dental metal, the SARs were better on FBP and IR images (FBP: 1.7 and 0.5 with and without SEMAR, respectively; IR: 1.6 and 0.9 with and without SEMAR, respectively). The observer visual scores improved with SEMAR (FBP: 4.2 and 3.2 with and without SEMAR, respectively; IR: 4.2 and 3.0).ConclusionThe SEMAR algorithm reduces dental metal artifacts and improves lesion detectability and image quality in patients with oral cavity lesions.  相似文献   

5.

Background

Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence.

Methods

In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT.

Results

We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by the proposed method.

Conclusions

The proposed tomosynthesis technique can improve image contrast with aids of 3D whole volume CT images. Even though local tomosynthesis needs extra 3D CT scanning, it may find clinical applications in special situations in which extra 3D CT scan is already available or allowed.  相似文献   

6.
PurposeArm-artifact, a type of streak artifact frequently observed in computed tomography (CT) images obtained at arms-down positioning in polytrauma patients, is known to degrade image quality. This study aimed to develop a novel arm-artifact reduction algorithm (AAR) applied to projection data.MethodsA phantom resembling an adult abdomen with two arms was scanned using a 16-row CT scanner. The projection data were processed by AAR, and CT images were reconstructed. The artifact reduction for the same phantom was compared with that achieved by two latest iterative reconstruction (IR) techniques (IR1 and IR2) using a normalized artifact index (nAI) at two locations (ventral and dorsal side). Image blurring as a processing side effect was compared with IR2 of the model-based IR using a plastic needle phantom. Additionally, the projection data of two clinical cases were processed using AAR, and the image noise was evaluated.ResultsAAR and IR2 significantly reduced nAI by 87.5% and 74.0%, respectively at the ventral side and 84.2% and 69.6%, respectively, at the dorsal side compared with each filtered back projection (P < 0.01), whereas IR1 did not. The proposed algorithm mostly maintained the original spatial resolution, compared with IR2, which yielded apparent image blurring. The image noise in the clinical cases was also reduced significantly (P < 0.01).ConclusionsAAR was more effective and superior than the latest IR techniques and is expected to improve the image quality of polytrauma CT imaging with arms-down positioning.  相似文献   

7.
PurposeAnti-scatter grids suppress the scatter substantially thus improving image contrast in radiography. However, its active use in cone-beam CT for the purpose of improving contrast-to-noise ratio (CNR) has not been successful mainly due to the increased noise related to Poisson statistics of photons. This paper proposes a sparse-view scanning approach to address the above issue.MethodCompared to the conventional cone-beam CT imaging framework, the proposed method reduces the number of projections and increases exposure in each projection to enhance image quality without an additional cost of radiation dose to patients. For image reconstruction from sparse-view data, an adaptive-steepest-descent projection-onto-convex-sets (ASD POCS) algorithm regularized by total-variation (TV) minimization was adopted. Contrast and CNR with various scattering conditions were evaluated in projection domain by a simulation study using GATE. Then we evaluated contrast, resolution, and image uniformity in CT image domain with Catphan phantom. A head phantom with soft-tissue structures was also employed for demonstrating a realistic application. A virtual grid-based estimation and reduction of scatter has also been implemented for comparison with the real anti-scatter grid.ResultsIn the projection domain evaluation, contrast and CNR enhancement was observed when using an anti-scatter grid compared to the virtual grid. In the CT image domain, the proposed method produced substantially higher contrast and CNR of the low-contrast structures with much improved image uniformity.ConclusionWe have shown that the proposed method can provide high-quality CBCT images particularly with an increased contrast of soft-tissue at a neutral dose for image-guidance.  相似文献   

8.
This paper presents a total variation (TV) regularized reconstruction algorithm for 3D positron emission tomography (PET). The proposed method first employs the Fourier rebinning algorithm (FORE), rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV) based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS). Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF) (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF).  相似文献   

9.
The ring artifacts introduced by the defective pixels with non-linear responses in the high-resolution detector, have a great impact on subsequent processing and quantitative analysis of the reconstructed images. In this paper, a multistep method is proposed to suppress the ring artifacts of micro CT images, which firstly locates the positions of the defective pixels in the sinogram, and then corrects the corresponding value in the projections. Since the defective pixels always appear as vertical stripes in the sinogram, a horizontal curve is derived by summing the pixel values along vertical direction, thus the abrupt segments related to the defective stripes are enhanced notably, and a proportion coefficient based on the second derivative of the curve is taken as the indicator for the position and the severity of the defective pixels. Then, the detected defective pixels in the sinogram are transferred and relocated in the projections, an improved 3D block matching filtering (BM3D) algorithm is applied to restore the defective pixels in corresponding projection images. In the end, the tomographic images are reconstructed from the corrected projections. In the experiment, a small piece of the motherwort’s rhizome and a part of a mouse’s lung are imaged by micro-CT, and the result shows that, compared with the other four state-of-art methods, the proposed method has a great reduction on the ring artifacts of the reconstructed images, and makes less impact in spatial resolution and contrast in the same time.  相似文献   

10.
In practical applications of computed tomography (CT) imaging, due to the risk of high radiation dose imposed on the patients, it is desired that high quality CT images can be accurately reconstructed from limited projection data. While with limited projections, the images reconstructed often suffer severe artifacts and the edges of the objects are blurred. In recent years, the compressed sensing based reconstruction algorithm has attracted major attention for CT reconstruction from a limited number of projections. In this paper, to eliminate the streak artifacts and preserve the edge structure information of the object, we present a novel iterative reconstruction algorithm based on weighted total difference (WTD) minimization, and demonstrate the superior performance of this algorithm. The WTD measure enforces both the sparsity and the directional continuity in the gradient domain, while the conventional total difference (TD) measure simply enforces the gradient sparsity horizontally and vertically. To solve our WTD-based few-view CT reconstruction model, we use the soft-threshold filtering approach. Numerical experiments are performed to validate the efficiency and the feasibility of our algorithm. For a typical slice of FORBILD head phantom, using 40 projections in the experiments, our algorithm outperforms the TD-based algorithm with more than 60% gains in terms of the root-mean-square error (RMSE), normalized root mean square distance (NRMSD) and normalized mean absolute distance (NMAD) measures and with more than 10% gains in terms of the peak signal-to-noise ratio (PSNR) measure. While for the experiments of noisy projections, our algorithm outperforms the TD-based algorithm with more than 15% gains in terms of the RMSE, NRMSD and NMAD measures and with more than 4% gains in terms of the PSNR measure. The experimental results indicate that our algorithm achieves better performance in terms of suppressing streak artifacts and preserving the edge structure information of the object.  相似文献   

11.
PurposeTo study the feasibility of using an iterative reconstruction algorithm to improve previously reconstructed CT images which are judged to be non-diagnostic on clinical review. A novel rapidly converging, iterative algorithm (RSEMD) to reduce noise as compared with standard filtered back-projection algorithm has been developed.Materials and methodsThe RSEMD method was tested on in-silico, Catphan®500, and anthropomorphic 4D XCAT phantoms. The method was applied to noisy CT images previously reconstructed with FBP to determine improvements in SNR and CNR. To test the potential improvement in clinically relevant CT images, 4D XCAT phantom images were used to simulate a small, low contrast lesion placed in the liver.ResultsIn all of the phantom studies the images proved to have higher resolution and lower noise as compared with images reconstructed by conventional FBP. In general, the values of SNR and CNR reached a plateau at around 20 iterations with an improvement factor of about 1.5 for in noisy CT images. Improvements in lesion conspicuity after the application of RSEMD have also been demonstrated. The results obtained with the RSEMD method are in agreement with other iterative algorithms employed either in image space or with hybrid reconstruction algorithms.ConclusionsIn this proof of concept work, a rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach that operates on DICOM CT images has been demonstrated. The RSEMD method can be applied to sub-optimal routine-dose clinical CT images to improve image quality to potentially diagnostically acceptable levels.  相似文献   

12.
S. Li  J.C. Nunes  C. Toumoulin  L. Luo 《IRBM》2018,39(1):69-82

Background

3D reconstruction of the coronary arteries can provide more information in the interventional surgery. Motion compensation is one kind of the 3D reconstruction method.

Methods

We propose a novel and complete 2D motion compensated reconstruction method. The main components include initial reconstruction, forward projection, registration and compensated reconstruction. We apply the mutual information (MI) and rigidity penalty (RP) as registration measure. The advanced adaptive stochastic gradient descent (ASGD) is adopted to optimize this cost function. We generate the maximum forward projection by the simplified distance driven (SDD) projector. The compensated reconstruction adopts the MAP iterative reconstruction algorithm which is based on L0 prior.

Results

Comparing with the ECG-gating reconstruction and other reference method, the evaluation indicates that the proposed 2D motion compensation leads to a better 3D reconstruction for both the rest and stronger motion phases. The algorithm compensates the residual motion and reduces the artifact largely. As the gating window width increases, the overall image noise decreases and the contrast of the vessels improves.

Conclusions

The proposed method improved the 3D reconstruction quality and reduced the artifact level. The considerable improvement in the image quality results from motion compensation increases the clinical usability of 3D coronary artery.  相似文献   

13.
PurposeThe Bayesian penalized-likelihood reconstruction algorithm (BPL), Q.Clear, uses relative difference penalty as a regularization function to control image noise and the degree of edge-preservation in PET images. The present study aimed to determine the effects of suppression on edge artifacts due to point-spread-function (PSF) correction using a Q.Clear.MethodsSpheres of a cylindrical phantom contained a background of 5.3 kBq/mL of [18F]FDG and sphere-to-background ratios (SBR) of 16, 8, 4 and 2. The background also contained water and spheres containing 21.2 kBq/mL of [18F]FDG as non-background. All data were acquired using a Discovery PET/CT 710 and were reconstructed using three-dimensional ordered-subset expectation maximization with time-of-flight (TOF) and PSF correction (3D-OSEM), and Q.Clear with TOF (BPL). We investigated β-values of 200–800 using BPL. The PET images were analyzed using visual assessment and profile curves, edge variability and contrast recovery coefficients were measured.ResultsThe 38- and 27-mm spheres were surrounded by higher radioactivity concentration when reconstructed with 3D-OSEM as opposed to BPL, which suppressed edge artifacts. Images of 10-mm spheres had sharper overshoot at high SBR and non-background when reconstructed with BPL. Although contrast recovery coefficients of 10-mm spheres in BPL decreased as a function of increasing β, higher penalty parameter decreased the overshoot.ConclusionsBPL is a feasible method for the suppression of edge artifacts of PSF correction, although this depends on SBR and sphere size. Overshoot associated with BPL caused overestimation in small spheres at high SBR. Higher penalty parameter in BPL can suppress overshoot more effectively.  相似文献   

14.
The Filtered Back-Projection (FBP) algorithm and its modified versions are the most important techniques for CT (Computerized tomography) reconstruction, however, it may produce aliasing degradation in the reconstructed images due to projection discretization. The general iterative reconstruction (IR) algorithms suffer from their heavy calculation burden and other drawbacks. In this paper, an iterative FBP approach is proposed to reduce the aliasing degradation. In the approach, the image reconstructed by FBP algorithm is treated as the intermediate image and projected along the original projection directions to produce the reprojection data. The difference between the original and reprojection data is filtered by a special digital filter, and then is reconstructed by FBP to produce a correction term. The correction term is added to the intermediate image to update it. This procedure can be performed iteratively to improve the reconstruction performance gradually until certain stopping criterion is satisfied. Some simulations and tests on real data show the proposed approach is better than FBP algorithm or some IR algorithms in term of some general image criteria. The calculation burden is several times that of FBP, which is much less than that of general IR algorithms and acceptable in the most situations. Therefore, the proposed algorithm has the potential applications in practical CT systems.  相似文献   

15.
PurposeThis study was aimed to evaluate the utility based on imaging quality of the fast non-local means (FNLM) filter in diagnosing lung nodules in pediatric chest computed tomography (CT).MethodsWe retrospectively reviewed the chest CT reconstructed with both filtered back projection (FBP) and iterative reconstruction (IR) in pediatric patients with metastatic lung nodules. After applying FNLM filter with six h values (0.0001, 0.001, 0.01, 0.1, 1, and 10) to the FBP images, eight sets of images including FBP, IR, and FNLM were analyzed. The image quality of the lung nodules was evaluated objectively for coefficient of variation (COV), contrast to noise ratio (CNR), and point spread function (PSF), and subjectively for noise, sharpness, artifacts, and diagnostic acceptability.ResultsThe COV was lowest in IR images and decreased according to increasing h values and highest with FBP images (P < 0.001). The CNR was highest with IR images, increased according to increasing h values and lowest with FBP images (P < 0.001). The PSF was lower only in FNLM filter with h value of 0.0001 or 0.001 than in IR images (P < 0.001). In subjective analysis, only images of FNLM filter with h value of 0.0001 or 0.001 rarely showed unacceptable quality and had comparable results with IR images. There were less artifacts in FNLM images with h value of 0.0001 compared with IR images (p < 0.001).ConclusionFNLM filter with h values of 0.0001 allows comparable image quality with less artifacts compared with IR in diagnosing metastatic lung nodules in pediatric chest CT.  相似文献   

16.
ObjectiveTo assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR).MethodsOne hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared.ResultsThe CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904).ConclusionsCT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses.  相似文献   

17.
An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and 1-regularized parallel imaging methods.  相似文献   

18.
PurposeTo investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses.Materials and methodsUsing an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70–80%, 40–80%, and 0–100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center.ResultsWith half-scan reconstruction at 60 bpm, a 70–80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70–80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm.ConclusionAEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose.  相似文献   

19.
Optical computed tomography (optical CT) has been proven to be a useful tool for dose readouts of polymer gel dosimeters. In this study, the algebraic reconstruction technique (ART) for image reconstruction of gel dosimeters was used to improve the image quality of optical CT. Cylindrical phantoms filled with N-isopropyl-acrylamide polymer gels were irradiated using a medical linear accelerator. A circular dose distribution and a hexagonal dose distribution were produced by applying the VMAT technique and the six-field dose delivery, respectively. The phantoms were scanned using optical CT, and the images were reconstructed using the filtered back-projection (FBP) algorithm and the ART. For the circular dose distribution, the ART successfully reduced the ring artifacts and noise in the reconstructed image. For the hexagonal dose distribution, the ART reduced the hot spots at the entrances of the beams and increased the dose uniformity in the central region. Within 50% isodose line, the gamma pass rates for the 2 mm/3% criteria for the ART and FBP were 99.2% and 88.1%, respectively. The ART could be used for the reconstruction of optical CT images to improve image quality and provide accurate dose conversion for polymer gel dosimeters.  相似文献   

20.
IntroductionWe have been developing a medical imaging technique using a Compton camera, which is expected to reconstruct three-dimensional images. If the number of views is not sufficient, star-shaped artifacts (streak artifacts) could arise in cross-sectional images. Therefore, we estimated the point spread function (PSF) of cross-sectional Compton images and the effect of the number of views by Monte Carlo simulations and experimental studies.Materials and methodsA cross-sectional Compton image was reconstructed using a dataset comprising 719 view directions and PSF was analyzed using a radial distribution. The peak height, full width at half maximum (FWHM), background (BG), and residual sum of squares (RSS) were calculated from the obtained PSF. In addition, RSSs were plotted against the number of views to estimate the required number to suppress star-shaped artifacts.ResultsThere was no correlation found between the number of views and both FWHM (16 mm) and peak/BG ratio (∼1 × 104). RSSs were reduced with the number of views and approached the minimum asymptotically. Correlation was observed between the required number of views and the number of Compton events used for image reconstruction.ConclusionWe determined the PSF of cross-sectional Compton images and the effect of the number of views on the images. The required number of views to suppress the star-shaped artifact is related to the square root of the number of Compton events used to reconstruct the image. From this study, we concluded that 21 or more views are required for clinical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号