首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemical reaction of 2',3',5'-tri-O-acetyl-8-bromoadenosine (2) with triethyl phosphite, followed by deacetylation, gave diethyl adenosine-8-phosphonate (1). Intramolecular cyclization of diethyl 8-bromo-2',3'-O-isopropylideneadenosine-5'-phosphite (6) was accomplished with photo-irradiation to yield ethyl 2',3'-O-isopropylidene-adenosine-8,5'-phosphonate (4).  相似文献   

2.
Synthesis of the conveniently protected epimer at C-3' of the miharamycin sugar moiety was accomplished starting from the corresponding 3,3'-spiroepoxide. Reaction of the epoxide with lithium cyanide, followed by hydrolysis and spontaneous cyclization, afforded the intermediate deoxylactone methyl 4,6-O-benzylidene-3-C-(carboxymethyl)-alpha-D-glucopyranoside-3',2-lacto ne (8). Stereoselective hydroxylation with MoO5 x py x HMPA, reduction with lithium aluminum hydride and cyclization with diethyl azodicarboxylate-triphenylphosphine gave the target molecule methyl 2,3'-anhydro-4,6-O-benzylidene-3-C-[(R)-1,2-dihydroxyethyl]-alpha -D-glucopyranoside (5). Direct reduction of 8 gave other analogs having no C-3' hydroxyl group together with having a C-3' hydroxyl group (hemiacetal). In addition, C-3' epimers were also synthesized through C-3', C-3' dihydroxy analogs. Wittig reaction of an appropriate ketosugar with [(ethoxycarbonyl)methylene]triphenylphosphorane leading to a 7:3 Z/E mixture, followed by hydroxylation with osmium tetroxide, reduction and cyclization afforded the target molecule 5 and the miharamycin sugar moiety methyl 2,3'-anhydro-4,6-O-benzylidene-3-C-[(S)-1,2-dihydroxyethyl]-alpha -D-glucopyranoside. Examination of X-ray data for 5 and its NMR spectroscopy data allowed us to explain a contradiction reported in the literature.  相似文献   

3.
The mechanism of the oxidative cyclization reaction catalyzed by clavaminic acid synthase (CAS) was studied in silico. First, a classical molecular dynamics (MD) simulation was performed to obtain a realistic structure of the CAS-Fe(IV)=O-succinate-substrate complex; then potential of mean force (PMF) was calculated to assess the feasibility of the beta-lactam ring, more specifically its C4' corner, approaching the oxo atom. Based on the MD structure, a relatively large model of the active site region was selected and used in the B3LYP investigation of the reaction mechanism. The computational results suggest that once the oxoferryl species is formed, the oxidative cyclization catalyzed by CAS most likely involves either a mechanism involving C4'(S)-H bond cleavage of the monocyclic beta-lactam ring, or a biosynthetically unprecedented mechanism comprising (1) oxidation of the hydroxyl group of PCA to an O-radical, (2) retro-aldol-like decomposition of the O-radical to an aldehyde and a C-centered radical, which is stabilized by the captodative effect, (3) abstraction of a hydrogen atom from the C4'(S) position of the C-centered radical by the Fe(III)-OH species yielding an azomethine ylide, and (4) 1,3-dipolar cycloaddition to the ylide with aldehyde acting as a dipolarophile. Precedent for the new proposed mechanism comes from the reported synthesis of oxapenams via 1,3-dipolar cycloaddition reactions of aldehydes and ketones.  相似文献   

4.
5.
Synthesis of antibiotics, puromycin and 3'-amino-3'-deoxy-N6,N6-dimethyladenosine 11 was achieved by utilizing the cyclic sulfite 6a of the xylo-3',5'-dihydroxy group as a new protective group. The key synthetic step is the deprotection of the sulfite moiety through the intramolecular cyclization of 2-alpha-carbamate 7. In a similar manner 2,2'-anhydro-pyrimidine nucleosides 15, ribo-cytidines 17 and 2',3'-anhydroadenosine 14 were prepared in high yields from the corresponding sulfites 4, 5, and 6b, respectively.  相似文献   

6.
Chalcone isomerase (CHI) catalyzes the intramolecular cyclization of bicyclic chalcones into tricyclic (S)-flavanones. The activity of CHI is essential for the biosynthesis of flavanone precursors of floral pigments and phenylpropanoid plant defense compounds. We have examined the spontaneous and CHI-catalyzed cyclization reactions of 4,2',4',6'-tetrahydroxychalcone, 4,2',4'-trihydroxychalcone, 2',4'-dihydroxychalcone, and 4,2'-dihydroxychalcone into the corresponding flavanones. The pH dependence of flavanone formation indicates that both the non-enzymatic and enzymatic reactions first require the bulk phase ionization of the substrate 2'-hydroxyl group and subsequently on the reactivity of the newly formed 2'-oxyanion during C-ring formation. Solvent viscosity experiments demonstrate that at pH 7.5 the CHI-catalyzed cyclization reactions of 4,2',4',6'-tetrahydroxychalcone, 4,2',4'-trihydroxychalcone, and 2',4'-dihydroxychalcone are approximately 90% diffusion-controlled, whereas cyclization of 4,2'-dihydroxychalcone is limited by a chemical step that likely reflects the higher pK(a) of the 2'-hydroxyl group. At pH 6.0, the reactions with 4,2',4',6'-tetrahydroxychalcone and 4,2',4'-trihydroxychalcone are approximately 50% diffusion-limited, whereas the reactions of both dihydroxychalcones are limited by chemical steps. Comparisons of the 2.1-2.3 A resolution crystal structures of CHI complexed with the products 7,4'-dihydroxyflavanone, 7-hydroxyflavanone, and 4'-hydroxyflavanone show that the 7-hydroxyflavanones all share a common binding mode, whereas 4'-hydroxyflavanone binds in an altered orientation at the active site. Our functional and structural studies support the proposal that CHI accelerates the stereochemically defined intramolecular cyclization of chalcones into biologically active (2S)-flavanones by selectively binding an ionized chalcone in a conformation conducive to ring closure in a diffusion-controlled reaction.  相似文献   

7.
G N Bennett  G R Gough  P T Gilham 《Biochemistry》1976,15(21):4623-4628
A new procedure for the synthesis of the pyrophosphate bond has been employed in the preparation of nucleoside dipyrophosphates from nucleoside 3',5'-diphosphates. The method makes use of a powerful phosphorylating agent generated in a mixture of cyanoethyl phosphate, dicyclohexylcarbodiimide, and mesitylenesulfonyl chloride in order to avoid possible intramolecular reactions between the two phosphate groups on the sugar ring. That such reactions can readily occur was shown by the facile cyclization of deoxyguanosine 3',5'-diphosphate to P1,P2-deoxyguanosine 3',5'-cyclic pyrophosphate in the presence of dicyclohexylcarbodiimide alone. The phosphorylation reagent was initially tested in the conversion of deoxyguanosine 3',5'-diphosphate to the corresponding 3',5'-dipyrophosphate and was then used to phosphorylate 2'-O-(alpha-methoxyethyl)guanosine 3',5'-diphosphate, which had been prepared from 2'-O-(alpha-methoxyethyl)guanosine. In the latter case, the addition of the two beta phosphate groups was accomplished in 40% yield. Removal of the methoxyethyl group from the phosphorylated product gave guanosine 3',5'-dipyrophosphate, which was shown to be identical with guanosine tetraphosphate prepared enzymatically from a mixture of GDP and ATP. A modification of published procedures was also necessary to effect the synthesis of guanosine bis(methylenediphosphonate). Guanosine was treated with methylenediphosphonic acid and dicyclohexylcarbodiimide in the absence of added base. The product consisted of a mixture of guanosine 2',5' - and 3',5'-bis(methylenediphosphonate), which was resolved by anion-exchange chromatography. The 2',5' and 3',5' isomers are interconvertible at low pH, with the ultimate formation of an equilibrium mixture having a composition ratio of 2:3. The predominant constituent of this mixture has been unequivocally identified as the 3',5' isomer by synthesis from 2'-O-tetrahydropyranylguanosine.  相似文献   

8.
An RNA molecule consisting of the 5' exon and intervening sequence (IVS) of Tetrahymena precursor rRNA was oxidized with sodium periodate to convert the ribose moiety of the 3' terminal guanosine into a dialdehyde form. The modified RNA undergoes a specific cleavage reaction at the 5' splice site, but has no apparent cyclization activity. This novel reaction mediated by the IVS RNA is pH dependent over the range 6.5-8.5 and leaves a 5' phosphate and a 3'-OH at the newly created termini. The dialdehyde form of monomer guanosine is also capable of causing a specific cleavage reaction at the 5' splice site although the nucleotide is not covalently attached to the IVS RNA in the final product. These and other findings described in this report suggest that the cis diol of the intact ribose moiety of guanosine is not an absolute requirement for the IVS-mediated reactions.  相似文献   

9.
N K Tanner  T R Cech 《Biochemistry》1987,26(12):3330-3340
We have converted the intramolecular cyclization reaction of the self-splicing intervening sequence (IVS) ribonucleic acid (RNA) from Tetrahymena thermophila into an intermolecular guanosine addition reaction. This was accomplished by selectively removing the 3'-terminal nucleotide by oxidation and beta-elimination; the beta-eliminated IVS thereby is no longer capable of reacting with itself. However, under cyclization conditions, a free guanosine molecule can make a nucleophilic attack at the normal cyclization site. We have used this guanosine addition reaction as a model system for a Michaelis-Menten kinetic analysis of the guanosine binding site involved in cyclization. The results indicate that functional groups on the guanine that are used in a G-C Watson-Crick base pair are important for the cyclization reaction. This is the same result that was obtained for the guanosine binding site involved in splicing [Bass, B. L., & Cech, T. R. (1984) Nature (London) 308, 820-826]. Unlike splicing, however, certain additional nucleotides 5' to the guanosine moiety make significant binding contributions. We conclude that the guanosine binding site in cyclization is similar to, but not identical with, the guanosine binding site in splicing. The same binding interactions used in cyclization could help align the 3' splice site of the rRNA precursor for exon ligation. We also report that the phosphodiester bond at the cyclization site is susceptible to a pH-dependent hydrolysis reaction; the phosphodiester bond is somehow activated toward attack by the 3'hydroxyl of a guanosine molecule or by a hydroxyl ion.  相似文献   

10.
11.
The UV photolysis of 8-bromo-2'-deoxyadenosine has been investigated in different solvents and in the presence of additives like halide anions. Photolytic cleavage of the C-Br bond leads to formation of the C8 radical. In methanol, subsequent hydrogen abstraction from the solvent is the main radical reaction; however, in water or acetonitrile intramolecular hydrogen abstraction from the sugar moiety, to give the C5' radical, is the major path. This C5' radical undergoes a cyclization reaction on the adenine and gives the aminyl radical. A rate constant of 1.8 x 10(5) s(-1) has been measured by laser flash photolysis in CH(3)CN for this unimolecular process. Product studies from steady-state photolysis in acetonitrile have shown the conversion of 8-bromo-2'-deoxyadenosine to 5',8-cyclo-2'-deoxyadenosine in 65% yield and in a diastereoisomeric ratio (5' R):(5' S)= 1.7. Evidence supporting that the equilibrium Br*+ Br(-)[right left harpoons] Br(2)*(-) plays an important role in this synthetically useful radical cascade is obtained by regulating the relative concentrations of the two reactive oxidizing species.  相似文献   

12.
The DPPH radical scavenging activity of 2',4',6'-trihydroxy- and 2'-hydroxy-4',6'-dimethoxychalcones carrying a 2,3- and 3,4-dihydroxylated, and 3,4,5-trihydroxylated B-ring was evaluated in alcoholic and non-alcoholic solvents. All test compounds scavenged more than two equivalent of radicals by a possible conversion to the corresponding B-ring quinones and in most cases subsequently underwent cyclization to aurones and flavanones, these being identified in the reaction solutions by an in situ NMR analysis. Interestingly, the reaction between 2',3,4-trihydroxy-4',6'-dimethoxychalcone and the DPPH radical was significantly affected by the solvent used, which might be accounted for by the difference in readiness for cyclization to an aurone.  相似文献   

13.
RNA 3'-terminal phosphate cyclases are a family of evolutionarily conserved enzymes that catalyze ATP-dependent conversion of the 3'-phosphate to the 2',3'-cyclic phosphodiester at the end of RNA. The precise function of cyclases is not known, but they may be responsible for generating or regenerating cyclic phosphate RNA ends required by eukaryotic and prokaryotic RNA ligases. Previous work carried out with human and Escherichia coli enzymes demonstrated that the initial step of the cyclization reaction involves adenylation of the protein. The AMP group is then transferred to the 3'-phosphate in RNA, yielding an RNA-N(3')pp(5')A (N is any nucleoside) intermediate, which finally undergoes cyclization. In this work, by using different protease digestions and mass spectrometry, we assign the site of adenylation in the E. coli cyclase to His-309. This histidine is conserved in all members of the class I subfamily of cyclases identified by phylogenetic analysis. Replacement of His-309 with asparagine or alanine abrogates both enzyme-adenylate formation and cyclization of the 3'-terminal phosphate in a model RNA substrate. The cyclase is the only known protein undergoing adenylation on a histidine residue. Sequences flanking the adenylated histidine in cyclases do not resemble those found in other proteins modified by nucleotidylation.  相似文献   

14.
RNA 3'-phosphate cyclase (Rtc) enzymes are a widely distributed family that catalyze the synthesis of RNA 2',3'-cyclic phosphate ends via an ATP-dependent pathway comprising three nucleotidyl transfer steps: reaction of Rtc with ATP to form a covalent Rtc-(histidinyl-N)-AMP intermediate and release PP(i); transfer of AMP from Rtc to an RNA 3'-phosphate to form an RNA(3')pp(5')A intermediate; and attack by the terminal nucleoside O2' on the 3'-phosphate to form an RNA 2',3'-cyclic phosphate product and release AMP. The chemical transformations of the cyclase pathway resemble those of RNA and DNA ligases, with the key distinction being that ligases covalently adenylylate 5'-phosphate ends en route to phosphodiester synthesis. Here we show that the catalytic repertoire of RNA cyclase overlaps that of ligases. We report that Escherichia coli RtcA catalyzes adenylylation of 5'-phosphate ends of DNA or RNA strands to form AppDNA and AppRNA products. The polynucleotide 5' modification reaction requires the His(309) nucleophile, signifying that it proceeds through a covalent RtcA-AMP intermediate. We established this point directly by demonstrating transfer of [(32)P]AMP from RtcA to a pDNA strand. RtcA readily adenylylated the 5'-phosphate at a 5'-PO(4)/3'-OH nick in duplex DNA but was unable to covert the nicked DNA-adenylate to a sealed phosphodiester. Our findings raise the prospect that cyclization of RNA 3'-ends might not be the only biochemical pathway in which Rtc enzymes participate; we discuss scenarios in which the 5'-adenylyltransferase of RtcA might play a role.  相似文献   

15.
Adenylate cyclase from Brevibacterium liquefaciens (ATCC 14929) catalyzes the formation of the RP-diastereomer of adenosine 3':5'-cyclic monophosphorothioate from the SP-diastereomer of adenosine-5'-(1-thiotriphosphate). The reaction catalyzed by this adenylate cyclase proceeds with inversion of configuration at phosphorus, indicating that the cyclization reaction is direct and does not involve formation of an adenylated enzyme intermediate.  相似文献   

16.
Cells of Pseudomonas sp. strain HBP1 grown on 2-hydroxy- or 2,2'-dihydroxybiphenyl contain NADH-dependent monooxygenase activity that hydroxylates 2,2'-dihydroxybiphenyl. The product of this reaction was identified as 2,2',3-trihydroxybiphenyl by 1H nuclear magnetic resonance and mass spectrometry. Furthermore, the monooxygenase activity also hydroxylates 2,2',3-trihydroxybiphenyl at the C-3' position, yielding 2,2',3,3'-tetrahydroxybiphenyl as a product. An estradiol ring cleavage dioxygenase activity that acts on both 2,2',3-tri- and 2,2',3,3'-tetrahydroxybiphenyl was partially purified. Both substrates yielded yellow meta-cleavage compounds that were identified as 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienoic acid and 2-hydroxy-6-(2,3-dihydroxyphenyl)-6-oxo-2,4-hexadienoic acid, respectively, by gas chromatography-mass spectrometry analysis of their respective trimethylsilyl derivatives. The meta-cleavage products were not stable in aqueous incubation mixtures but gave rise to their cyclization products, 3-(chroman-4-on-2-yl)pyruvate and 3-(8-hydroxychroman-4-on-2-yl)pyruvate, respectively. In contrast to the meta-cleavage compounds, which were turned over to salicylic acid and 2,3-dihydroxybenzoic acid, the cyclization products are not substrates to the meta-cleavage product hydrolase activity. NADH-dependent salicylate monooxygenase activity catalyzed the conversions of salicylic acid and 2,3-dihydroxybenzoic acid to catechol and pyrogallol, respectively. The partially purified estradiol ring cleavage dioxygenase activity that acted on the hydroxybiphenyls also produced 2-hydroxymuconic semialdehyde and 2-hydroxymuconic acid from catechol and pyrogallol, respectively.  相似文献   

17.
The 1'alpha-phenylselenouridine derivative (4) was successfully synthesized via enolization at the 1'-position of the 3',5'-O-TIPDS-2'-ketouridine (1). After the introduction of a vinylsilyl tether as an intramolecular radical acceptor at the 2'-hydroxy group of 4, its atom-transfer radical cyclization reaction, followed by the treatment with TBAF gave 1'alpha-vinyluridine derivative (10). Using this procedure, 1'alpha-vinyluridine (11) and -cytidine (14) were successfully synthesized.  相似文献   

18.
The mode of cyclization (5-exo versus 6-endo) of 2-sila-5-hexen-1-yl radicals generated from 2'-tributylstannyl- and 2'-trimethylsilyl-6-(bromomethyl)dimethylsilyl-1',2'-unsaturated uridines (8 and 9) was investigated. Although the actual structure of the reaction products differ from each other reflecting the ease of elimination of the 2'-substituent, it was found that both substrates prefer the 5-exo-cyclization pathway.  相似文献   

19.
Essential Role of Cyclization Sequences in Flavivirus RNA Replication   总被引:13,自引:0,他引:13       下载免费PDF全文
A possible role in RNA replication for interactions between conserved complementary (cyclization) sequences in the 5'- and 3'-terminal regions of Flavivirus RNA was previously suggested but never tested in vivo. Using the M-fold program for RNA secondary-structure predictions, we examined for the first time the base-pairing interactions between the covalently linked 5' genomic region (first ~160 nucleotides) and the 3' untranslated region (last ~115 nucleotides) for a range of mosquito-borne Flavivirus species. Base-pairing occurred as predicted for the previously proposed conserved cyclization sequences. In order to obtain experimental evidence of the predicted interactions, the putative cyclization sequences (5' or 3') in the replicon RNA of the mosquito-borne Kunjin virus were mutated either separately, to destroy base-pairing, or simultaneously, to restore the complementarity. None of the RNAs with separate mutations in only the 5' or only the 3' cyclization sequences was able to replicate after transfection into BHK cells, while replicon RNA with simultaneous compensatory mutations in both cyclization sequences was replication competent. This was detected by immunofluorescence for expression of the major nonstructural protein NS3 and by Northern blot analysis for amplification and accumulation of replicon RNA. We then used the M-fold program to analyze RNA secondary structure of the covalently linked 5'- and 3'-terminal regions of three tick-borne virus species and identified a previously undescribed additional pair of conserved complementary sequences in locations similar to those of the mosquito-borne species. They base-paired with DeltaG values of approximately -20 kcal, equivalent or greater in stability than those calculated for the originally proposed cyclization sequences. The results show that the base-pairing between 5' and 3' complementary sequences, rather than the nucleotide sequence per se, is essential for the replication of mosquito-borne Kunjin virus RNA and that more than one pair of cyclization sequences might be involved in the replication of the tick-borne Flavivirus species.  相似文献   

20.
The ribonucleoside building block, N2-isobutyryl-2'-O-propargyl-3'-O-levulinyl guanosine, was prepared from commercial N2-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-propargyl guanosine in a yield of 91%. The propargylated guanylyl(3'-5')guanosine phosphotriester was synthesized from the reaction of N2-isobutyryl-2'-O-propargyl-3'-O-levulinyl guanosine with N2-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl] guanosine and isolated in a yield of 88% after P(III) oxidation, 3'-/5'-deprotection, and purification. The propargylated guanylyl(3'-5')guanosine phosphotriester was phosphitylated using 2-cyanoethyl tetraisopropylphosphordiamidite and 1H-tetrazole and was followed by an in situ intramolecular cyclization to give a propargylated c-di-GMP triester, which was isolated in a yield of 40% after P(III) oxidation and purification. Complete N-deacylation of the guanine bases and removal of the 2-cyanoethyl phosphate protecting groups from the propargylated c-di-GMP triester were performed by treatment with aqueous ammonia at ambient temperature. The final 2'-desilylation reaction was effected by exposure to triethylammonium trihydrofluoride affording the desired propargylated c-di-GMP diester, the purity of which exceeded 95%. Biotinylation of the propargylated c-di-GMP diester was easily accomplished through its cycloaddition reaction with a biotinylated azide derivative under click conditions to produce the biotinylated c-di-GMP conjugate of interest in an isolated yield of 62%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号