首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W G Dunphy  R Brands  J E Rothman 《Cell》1985,40(2):463-472
Using monoclonal antibodies and electron microscopy, we have localized N-acetylglucosamine transferase I within the Golgi apparatus. This enzyme initiates the conversion of asparagine-linked oligosaccharides to the complex type. We have found that the enzyme is concentrated in the central (or medial) cisternae of the Golgi stack. Cisternae at the cis and trans ends of the Golgi complex appear to lack this protein. These experiments establish a function for the medial portion of the Golgi and imply that the Golgi is partitioned into at least three biochemically and morphologically distinct cisternal compartments.  相似文献   

2.
We have isolated and sequenced the mouse zinc finger gene, Dnmt3l (DNA cytosine-5-methyltransferase 3-like), on mouse chromosome 10, showing similarity to members of the DNMT3/Dnmt3 family. The Dnmt3l protein contains an ADD zinc finger, which Dnmt3l shares with other Dnmt3 family members and Atrx. RT-PCR analysis showed Dnmt3l expression in testis, thymus, ovary, and heart, as well as in 7-day, 15-day, and 17-day mouse embryos.  相似文献   

3.
A glucosidase preparation with activity toward certain glucose-containing oligosaccharides was partially purified from calf liver membranes by Triton X-100 solubilization and DEAE-cellulose and hydroxylapatite chromatography. The enzyme preparation hydrolyzed the glucose residues from (glucose)1,(mannose)9(N-acetylglucosamine)1, and (glucose)2(mannose) 9(N-acetylglucosamine)1 but was totally inactive toward (glucose)3(mannose)9(N-acetylglucosamine) 1. In contrast, crude membrane preparations of the calf liver were active toward all three substrates. The partially purified enzyme had a pH optimum of 6.7 and was very unstable in the absence of added 20% glycerol. The rate of glucose release from the one-and two-glucose-containing oligosaccharides was significantly decreased when four or five of the mannose residues were first removed from the substrate. The release of glucose from (glucose)1(mannose)9(N-acetylglucosamine)1 was inhibited by p-nitrophenyl-α-d-glucoside much more effectively than by p-nitrophenyl-β-d-glucoside, suggesting that this glucose residue may be linked α to the mannose residue. We conclude that during oligosaccharide processing at least two different glucosidases are involved in glucose removal.  相似文献   

4.
Paper electrophoresis and Bio-Gel P-4 column chromatography of the oligosaccharides released from mouse kidney gamma-glutamyltranspeptidase by hydrazinolysis gave fractionation patterns quite distinct from those of the bovine and rat kidney enzymes. Structural studies of the fractionated oligosaccharides by sequential exoglycosidase digestion in combination with methylation analysis showed that mouse kidney gamma-glutamyltranspeptidase contains a series of bisected complex-type asparagine-linked sugar chains with the following oligosaccharides as their outer chain moieties: GlcNAc beta 1----, Sia alpha 2----Gal beta 1----4GlcNAc beta 1----, Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----, and sialylated N-acetyllactosamine repeating sugar chains. Some of these sugar chains were found for the first time in glycoproteins.  相似文献   

5.
6.
Mouse enamelysin (Mmp20), a member of the matrix metalloproteinase (MMP) family of extracellular matrix degrading enzymes, shows a high degree of homology with other MMPs, particularly those of the stromelysin/collagenase subfamilies. It is expressed exclusively in ameloblasts and odontoblasts. The mouse enamelysin gene (Mmp20) is made up of 10 exons spanning approximately 65 kb within the MMP gene cluster at the centromeric end of chromosome 9.  相似文献   

7.
Isolation and characterization of a genomic DDD mouse interleukin-3 gene   总被引:1,自引:0,他引:1  
K Todokoro  A Yamamoto  H Amanuma  Y Ikawa 《Gene》1985,39(1):103-107
  相似文献   

8.
A calcium-dependent alpha-1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides was purified to homogeneity from rabbit liver microsomes. N-terminal amino acid analysis was consistent with the presence of a homogeneous protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under both reducing and nonreducing conditions, revealed a single protein band with an apparent molecular weight of 52,000. Gel filtration and sedimentation analysis under nondenaturing conditions suggested that the purified enzyme is a monomeric protein. The mannosidase is a glycoprotein based on the presence of protein-linked sugar and specific binding of the enzyme to concanavalin A-Sepharose. Purified mannosidase was optimally active between pH 5.0 and 6.0. The enzyme was inactive with p-nitrophenyl-alpha-D-mannopyranoside and was inhibited by deoxymannojirimycin but not by swainsonine. The enzyme was specifically activated by Ca2+, with half-maximal activation occurring at concentrations of 10 microM or less and was inhibited by Mn2+, Co2+, Ba2+, and Zn2+. Calcium ions protected the enzyme against inactivation by p-chloromercuribenzoate. Rabbit liver mannosidase hydrolyzed alpha-1,2-mannosyl-mannose linkages in a variety of substrates including methyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (Schutzbach, J. S. (1987) Anal. Biochem. 167, 279-283), ovalbumin glycopeptide IV, and the high mannose chains of thyroglobulin and phytohemagglutinin-P. Approximately 70% of the alpha-1,2-linked mannosyl units in the oligosaccharides of thyroglobulin were accessible to rabbit liver alpha-mannosidase, whereas most of the alpha-1,2-mannosyl units in phytohemagglutinin were resistant to digestion prior to heat denaturation of the plant lectin.  相似文献   

9.
Emery-Dreifuss muscular dystrophy (EMD) is an X-linked recessive disorder associated with muscle wasting, contractures, and cardiomyopathy. The responsible emerin gene has recently been identified and found to encode a serine-rich protein similar to lamina-associated protein 2 (LAP2), although the disease mechanism remains obscure. In order to pursue the pathophysiology of this disorder, we report here the isolation and characterization of the complete mouse emerin gene. The emerin cDNA was isolated from murine strain BALB/c, and the emerin gene was isolated from strain 129. The 2.9-kb mouse emerin gene was completely sequenced and found to be composed of 6 exons and encode a protein 73% identical to that of the human protein. Key similarities with LAP2 were found to be conserved, including critical LAP2 phosphorylation sites. Examination of the murine promoter revealed three previously unrecognized cAMP response elements (CRE) conserved between human and mouse. While Northern analysis shows emerin to be widely expressed in the mouse, as it is in humans, these promoter elements may indicate cAMP responsiveness. These data provide the necessary elements to further investigate EMD in a murine system. Received: 1 December 1996 / Accepted: 12 January 1997  相似文献   

10.
11.
The tyrosine aminotransferase (TAT) gene is expressed in a tissue and developmental-specific manner. In addition, this gene is regulated by glucocorticoid and polypeptide hormones and its expression is affected when a regulatory region near the albino locus of the mouse is deleted. In order to allow studies of the molecular effects of these deletion mutations we have isolated and characterized the mouse TAT gene. The gene is 9.2 x 10(3) bases in length and consists of 12 exons which give rise to a 2.3 x 10(3) base long messenger RNA. The DNA sequence at the 5' end of the gene was determined and compared with the corresponding sequence of the rat tyrosine aminotransferase gene. The sequence comparison showed extensive homology over the entire region sequenced. In addition, DNA: DNA heteroduplex studies between the mouse and rat tyrosine aminotransferase genes revealed that this homology extends over the entire gene and its flanking sequences. The mouse tyrosine aminotransferase gene has been mapped distal to the serum esterase-1 locus on mouse chromosome 8, using a restriction fragment length polymorphism between two mouse species. Since the albino deletions are located on mouse chromosome 7, the assignment of the TAT gene to chromosome 8 suggests that a regulatory factor(s) affecting TAT gene expression acts in trans.  相似文献   

12.
13.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

14.
15.
16.
17.
The complete primary structures of the major Asn-linked oligosaccharides from the type II variant surface glycoproteins (VSGs), MITat 1.2 and MITat 1.7, and the type III VSG, MITat 1.5, were determined using a combination of exo- and endoglycosidase digestions, methylation analysis, acetolysis, and 500 MHz 1H NMR spectroscopy. Each variant contained classical branched oligomannose-type and biantennary complex oligosaccharides, a proportion of the latter substituted with terminal alpha(1-3)-linked galactose residues, the first report of the presence of this epitope in Trypanosoma brucei. In addition both the type II variants contained relatively large amounts of the unusual small oligomannose-type oligosaccharides, Man4GlcNAc2 and Man3GlcNAc2, and a diverse array of novel branched poly-N-acetyllactosamine oligosaccharides, similar but not identical to those from mammalian glycoproteins. These latter structures were also partially substituted with terminal alpha(1-3)-linked galactose residues. Glycosylation in the type II variants showed site specificity in that the poly-N-acetyllactosamine and Man(9-5)GlcNAc2 oligosaccharides were located exclusively at Asn-glycosylation site 1 very close to the C terminus, whereas the Man(4-3)GlcNAc2 and biantennary complex oligosaccharides were located exclusively at site 2. This is the first report of the presence of poly-N-acetyllactosamine oligosaccharides in protozoa.  相似文献   

18.
Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene.  相似文献   

19.
20.
The gene pbpC from Staphylococcus aureus was sequenced: it encodes a 691-amino-acid protein with all of the conserved motifs of a class B high-molecular-weight penicillin-binding protein (PBP), including the transpeptidase conserved motifs SXXK, SXN, and KTG. Insertional inactivation of pbpC and introduction of the intact gene in a laboratory mutant missing PBP 3 showed that the pbpC gene encodes the staphylococcal PBP 3. Inactivation of pbpC caused no detectable change in the muropeptide composition of cell wall peptidoglycan and had only minimum, if any, effect on growth rates, but caused a small but significant decrease in rates of autolysis. Cells of abnormal size and shape and disoriented septa were produced when bacteria with inactivated pbpC were grown in the presence of a sub-MIC of methicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号