首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
We have used phylogeographic analysis of mitochondrial DNA (COI and COII genes) and ecological niche modelling (ENM) to reconstruct the population history of Argosarchus horridus (White), a widespread species of New Zealand stick insect. These data were used to address outstanding questions on the role of glacial refugia in determining the distribution and genetic structure of New Zealand species. Phylogeographic analysis shows a general pattern of high diversity in upper North Island and reduced diversity in lower North Island and South Island. The ENM indicates that during the last glacial maximum, A. horridus was largely restricted to refugia around coastal areas of North Island. The ENM also suggests refugia on the northeast coast of South Island and southeast coast of North Island and this prediction is verified by phylogeographic analysis, which shows a clade restricted to this region. Argosarchus horridus is also most likely a geographic parthenogen where males are much rarer at higher latitudes. The higher levels of genetic variation in northern, bisexual populations suggest southern and largely unisexual populations originated from southwardly expanding parthenogenetic lineages. Bayesian skyline analysis also provides support for a recent population size increase consistent with a large increase in geographic distribution in the late Pleistocene. These results exemplify the utility of integrating ENM and phylogeographic analysis in testing hypotheses on the origin of geographic parthenogenesis and effects of Pleistocene environmental change on biodiversity.  相似文献   

2.
The widespread lycaenid butterfly Tongeia fischeri is distributed from eastern Europe to northeastern Asia and represented by three geographically isolated populations in Japan. In order to clarify the phylogeographic history of the species, we used sequences of three mitochondrial (COI, Cyt b and ND5) and two nuclear (Rpl5 and Ldh) genes of 207 individuals collected from 55 sites throughout Japan and five sites on the Asian continent. Phylogenetic trees and the median-joining network revealed six evolutionary mitochondrial haplotype clades, which corresponded to the geographic distribution of the species. Common ancestors of Japanese T. fischeri might have come to Japan during the mid-Pleistocene by multiple dispersals of continental populations, probably via a land bridge or narrow channel between western Japan and the Korean Peninsula. The geographical patterns of variation of mitochondrial and nuclear markers are discordant in northeastern Kyushu, possibly as a result of introgressive hybridization during the ancient contact between the Kyushu and Shikoku populations in the last glacial maximum. The phylogeographic pattern of T. fischeri in Japan are probably related to the geological history, Pleistocene climatic oscillations and distribution of the host plant.  相似文献   

3.

Background  

The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA) sequences from 42 human lineages, representing major clades with known geographic assignation.  相似文献   

4.
The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041–0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures due to differing environmental conditions.  相似文献   

5.
The origin of disjunct distributions in high dispersal marine taxa remains an important evolutionary question as it relates to the formation of new species in an environment where barriers to gene flow are not always obvious. To reconstruct the relationships and phylogeographic history of the antitropically and longitudinally disjunct bryozoan Membranipora membranacea populations were surveyed with mtDNA cytochrome oxidase 1 (COI) sequences across its cosmopolitan range. Maximum parsimony, maximum likelihood and Bayesian genealogies revealed three deep clades in the North Pacific and one monophyletic clade each in the southeast Pacific (Chile), southwest Pacific (Australia/New Zealand), North Atlantic and southeast Atlantic (South Africa). Human-mediated dispersal has not impacted M. membranacea’s large-scale genetic structure. M. membranacea did not participate in the trans-arctic interchange. Episodic long-distance dispersal, combined with climatic vicariance can explain the disjunct distribution. Dispersal led southward across the tropics perhaps 13 mya in the East Pacific and again northwards perhaps 6 mya in the Eastern Atlantic to colonize the North Atlantic from the south, and along the West Wind Drift to colonize Australia. The clades differentiated over evolutionary time in their respective ocean region, potentially forming a sibling species complex. The taxonomic status of the clades is discussed.  相似文献   

6.
Understanding genetic diversity patterns of endangered species is an important premise for biodiversity conservation. The critically endangered salamander Andrias davidianus, endemic to central and southern mainland in China, has suffered from sharp range and population size declines over the past three decades. However, the levels and patterns of genetic diversity of A. davidianus populations in wild remain poorly understood. Herein, we explore the levels and phylogeographic patterns of genetic diversity of wild‐caught A. davidianus using larvae and adult collection with the aid of sequence variation in (a) the mitochondrial DNA (mtDNA) fragments (n = 320 individuals; 33 localities), (b) 19 whole mtDNA genomes, and (c) nuclear recombinase activating gene 2 (RAG2; n = 88 individuals; 19 localities). Phylogenetic analyses based on mtDNA datasets uncovered seven divergent mitochondrial clades (A–G), which likely originated in association with the uplifting of mountains during the Late Miocene, specific habitat requirements, barriers including mountains and drainages and lower dispersal ability. The distributions of clades were geographic partitioned and confined in neighboring regions. Furthermore, we discovered some mountains, rivers, and provinces harbored more than one clades. RAG2 analyses revealed no obvious geographic patterns among the five alleles detected. Our study depicts a relatively intact distribution map of A. davidianus clades in natural species range and provides important knowledge that can be used to improve monitoring programs and develop a conservation strategy for this critically endangered organism.  相似文献   

7.
In this study, we explored how past terrestrial and marine climate changes have interacted to shape the phylogeographic patterns of the intertidal red seaweed Gracilaria caudata, an economically important species exploited for agar production in the Brazilian north‐east. Seven sites were sampled along the north‐east tropical and south‐east sub‐tropical Brazilian coast. The genetic diversity and structure of G. caudata was inferred using a combination of mitochondrial (COI and cox2‐3), chloroplast (rbcL) and 15 nuclear microsatellite markers. A remarkable congruence between nuclear, mitochondrial and chloroplast data revealed clear separation between the north‐east (from 03° S to 08° S) and the south‐east (from 20° S to 23° S) coast of Brazil. These two clades differ in their demographic histories, with signatures of recent demographic expansions in the north‐east and divergent populations in the south‐east, suggesting the maintenance of several refugia during the last glacial maximum due to sea‐level rise and fall. The Bahia region (around 12° S) occupies an intermediate position between both clades. Microsatellites and mtDNA markers showed additional levels of genetic structure within each sampled site located south of Bahia. The separation between the two main groups in G. caudata is likely recent, probably occurring during the Quaternary glacial cycles. The genetic breaks are concordant with (i) those separating terrestrial refugia, (ii) major river outflows and (iii) frontiers between tropical and subtropical regions. Taken together with previously published eco‐physiological studies that showed differences in the physiological performance of the strains from distinct locations, these results suggest that the divergent clades in G. caudata correspond to distinct ecotypes in the process of incipient speciation and thus should be considered for the management policy of this commercially important species.  相似文献   

8.
Evidence from numerous Pan‐African savannah mammals indicates that open‐habitat refugia existed in Africa during the Pleistocene, isolated by expanding tropical forests during warm and humid interglacial periods. However, comparative data from other taxonomic groups are currently lacking. We present a phylogeographic investigation of the African puff adder (Bitis arietans), a snake that occurs in open‐habitat formations throughout sub‐Saharan Africa. Multiple parapatric mitochondrial clades occur across the current distribution of B. arietans, including a widespread southern African clade that is subdivided into four separate clades. We investigated the historical processes responsible for generating these phylogeographic patterns in southern Africa using species distribution modelling and genetic approaches. Our results show that interior regions of South Africa became largely inhospitable for B. arietans during glacial maxima, whereas coastal and more northerly areas remained habitable. This corresponds well with the locations of refugia inferred from mitochondrial data using a continuous phylogeographic diffusion model. Analysis of data from five anonymous nuclear loci revealed broadly similar patterns to mtDNA. Secondary admixture was detected between previously isolated refugial populations. In some cases, this is limited to individuals occurring near mitochondrial clade contact zones, but in other cases, more extensive admixture is evident. Overall, our study reveals a complex history of refugial isolation and secondary expansion for puff adders and a mosaic of isolated refugia in southern Africa. We also identify key differences between the processes that drove isolation in B. arietans and those hypothesized for sympatric savannah mammals.  相似文献   

9.
Recent integration of ecological niche models in phylogeographic studies is improving our understanding of the processes structuring genetic variation across landscapes. Previous studies on the amphibian Bufotes boulengeri boulengeri uncovered a surprisingly weak intraspecific differentiation across the Maghreb region. We widely sampled this species from Morocco to Egypt and sequenced one nuclear and three mitochondrial (mtDNA) genes to determine the level of genetic variability across its geographic range. We evaluated these data with ecological niche modeling to reveal its evolutionary history in response to climate change during the Quaternary. Our results highlight some mtDNA phylogeographic structure within this species, with one haplogroup endemic to coastal Morocco, and one haplogroup widely distributed throughout North Africa. No or little genetic differentiation is observed between isolated populations from the Hoggar Mountains, the Sabha district and the islands of Kerkennah and Lampedusa, compared to others populations. This can be explained by the expansion of the distribution range of B. b. boulengeri during glacial periods. This might have facilitated the species’ dispersal and subsequent gene flow between most North African localities.  相似文献   

10.
Physalia is a genus of pelagic colonial hydrozoans often known by common names such as ‘Portuguese-man-of-war’ or ‘bluebottle’. Siphonophore systematists generally recognise only a single species in this genus, Physalia physalis, however the name Physalia utriculus is also still in common use, which has led to considerable taxonomic confusion. With some morphological variation between global regions there is the possibility that this genus holds a substantial amount of cryptic variation. We seek to examine the genetic structure of Physalia present in New Zealand coastal waters. Fifty-four specimens collected from 13 locations around New Zealand and Australia were sequenced for both mitochondrial cytochrome c oxidase I (COI) and the first internal transcribed spacer (ITS1) of the nuclear ribosomal cistron. Sequences were analysed using maximum likelihood and split decomposition neighbour networks to determine conflict between clans (the unrooted analog of clades). Three clans were identified from both the COI and ITS sequences. The results are complex and clans are not consistent between the two genes. Nevertheless, it seems that there is substantial cryptic diversity amongst Physalia present in New Zealand coastal waters.  相似文献   

11.
Deep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like Wolbachia that manipulate host reproduction. Phengaris butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two Phengaris species based on divergent mtDNA sequences. Since Phengaris species are highly endangered, the existence of cryptic species would have drastic consequences for conservation and management. We tested for cryptic speciation and alternative scenarios in P. teleius and P. nausithous based on a comprehensive sample across their Palaearctic ranges using COI gene sequences, nuclear microsatellites and tests for Wolbachia. In both species a deep mitochondrial split occurring 0.65–1.97 myrs ago was observed that did not correspond with microsatellite data but was concordant with Wolbachia infection. Haplotypes previously attributed to cryptic species were part of the Wolbachia-infected clades. In both species remaining phylogeographic structure was largely consistent between mitochondrial and nuclear genomes. In P. teleius several mitochondrial and nuclear groups were observed in East Asia while a single haplogroup and nuclear cluster prevailed across continental Eurasia. Neutrality tests suggested rapid demographic expansion into that area. In contrast, P. nausithous had several mitochondrial and nuclear groups in Europe, suggesting a complex phylogeographic history in the western part of the species range. We conclude that deep intraspecific divergences found in DNA barcode studies do not necessarily need to represent cryptic speciation but instead can be due to both infection by Wolbachia and phylogeographic structure.  相似文献   

12.
Sea-level fluctuations during the Pliocene and Pleistocene have shaped the landscape of the Northland region of New Zealand. We examined the comparative phylogeography of three skink species (Oligosoma moco, O. smithi, O. suteri) in northeastern New Zealand in order to investigate the impact of the historical processes that have prevailed since the Pliocene on the Northland fauna. O. moco, O. smithi and O. suteri have similar distributions across northeastern New Zealand, frequently occurring in sympatry. We obtained sequence data from across the entire range of each species, targeting the ND2 mitochondrial gene. Using Neighbor-Joining, Maximum likelihood and Bayesian methods, our analysis revealed contrasting phylogeographic patterns in each species. We found substantial phylogeographic structure within O. moco, with three distinct clades identified. Similarly, deep phylogeographic divergence was evident within O. smithi, with three distinct clades present. Clade 1 included O. smithi populations from the Three Kings Islands and the western coastline of Northland, while Clade 2 encompassed the remainder of the range. However, since Clade 3 corresponded to a described species (O. microlepis), O. smithi might represent a species complex. In both O. moco and O. smithi, divergences among clades are estimated to have occurred in the Pliocene, with divergences within clades occurring during the Pleistocene. In contrast, genetic divergence among O. suteri populations was extremely limited and indicative of more recent divergences during the Pleistocene. The lack of phylogeographic structure in O. suteri might be a consequence of its oviparous reproductive mode, which restricted its distribution to warm northern refugia during glacial maxima. Differences in the ecology and biology of each species might have produced contrasting responses to the same historical processes, and ultimately diverse phylogeographic patterns. Our study reveals an absence of consistent and concordant phylogeographic patterns in the Northland biota, even within the same taxonomic group.  相似文献   

13.
Although extrinsic factors, such as oceanic currents and isolation induced by sea level maxima during Plio-Pleistocene glacial cycles, are often suggested as principal determinants of marine phylogeography, they are not always complete explanations. The counterexamples to predominant phylogeographic patterns in southeastern Australia suggest for example, that intrinsic factors such a habitat preference or reproductive mode can have significant influence.We collected DNA sequences from mitochondrial cytochrome c oxidase I (COI) and two nuclear gene introns from the Austrocochlea constricta species group to determine whether its porcata and constricta phenotypes are genetically distinguishable, to examine the phylogeographic effects of the Bassian Isthmus landbridge formed between Tasmania and Victoria during glacial maxima, and to investigate the importance of intrinsic factors in structuring its genetic variability.No fixed genetic differences between the porcata and constricta phenotypes were identified in any gene so the number of species comprised by the group cannot yet be determined. The two major clades recovered in COI analyses were respectively found principally east or west of the Bassian Isthmus. A. constricta is the first lecithotrophic or estuarine invertebrate known to show this pattern. There were no fixed differences, for any of the three genes, between specimens from estuarine and marine populations within either the eastern or western COI clades. Other intrinsic factors such as breeding period (possibly) and larval type (probably) may play roles in modulating phylogeographic patterns.  相似文献   

14.
The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species.  相似文献   

15.
Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochondrial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the β-fibrinogen). The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the β-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded.  相似文献   

16.
The distribution of antilopine wallaroo, Macropus antilopinus, is marked by a break in the species’ range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re‐examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median‐joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau–Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.  相似文献   

17.
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species‐level taxonomy. We found five COI sub‐clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub‐clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.  相似文献   

18.
To investigate the role of vicariance and dispersal on New Zealand's estuarine biodiversity, we examined variability in mitochondrial cytochrome c oxidase subunit I (COI) gene sequences for the amphipod genus Paracorophium. Individuals from the two nominate endemic species (Paracorophium excavatum and Paracorophium lucasi) were collected from sites throughout the North and South Islands. Sequence divergences of 12.8% were detected among the species. However, divergences of up to 11.7% were also observed between well supported clades, suggesting the possibility of cryptic species. Nested clade analyses identified four distinct lineages from within both P. excavatum and P. lucasi, with boundaries between clades corresponding to topographical features (e.g. Cook Straight, North and East Cape). Sequence divergences of 3.7–4.9% were also observed within geographic regions (e.g. east and west coasts of the upper North Island). Genetic structure in Paracorophium appears to represent prolonged isolation and allopatric evolutionary processes dating back to the Upper Miocene and continuing through the Pliocene and early Pleistocene. On the basis of molecular clock estimates from sequence divergences and reconstructions of New Zealand's geological past, we suggest that sea level and landmass changes during the early Pleistocene (2 Mya) resulted in the isolation of previously contiguous populations leading to the present‐day patterns. COI genetic structure was largely congruent with previously observed allozyme patterns and highlights the utility of COI as an appropriate marker for phylogeographic studies of the New Zealand estuarine fauna. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 863–874.  相似文献   

19.
Australian scincid lizards in the genus Ctenotus constitute the most diverse vertebrate radiation in Australia. However, the evolutionary processes that have generated this diversity remain elusive, in part because both interspecific phylogenetic relationships and phylogeographic structure within Ctenotus species remain poorly known. Here we use nucleotide sequences from a mitochondrial locus and two nuclear introns to investigate broad-scale phylogeographic patterns within Ctenotus leonhardii and C. quattuordecimlineatus, two geographically widespread species of skinks that were found to have a surprisingly close genetic relationship in a previous molecular phylogenetic study. We demonstrate that the apparent close relationship between these ecologically and phenotypically distinct taxa is attributable to mitochondrial introgression from C. quattuordecimlineatus to C. leonhardii. In the western deserts, Ctenotus leonhardii individuals carry mtDNA lineages that are derived from C. quattuordecimlineatus mtDNA lineages from that geographic region. Coalescent simulations indicate that this pattern is unlikely to have resulted from incomplete lineage sorting, implicating introgressive hybridization as the cause of this regional gene-tree discordance.  相似文献   

20.
1. We evaluated the population genetic structure of the common New Zealand amphipod Paracalliope fluviatilis using eight allozyme loci, and the mitochondrial cytochrome oxidase c subunit I (COI) gene locus. Morphological analyses were also conducted to evaluate any phenotypic differences. Individuals belonging to P. fluviatilis were collected from a total of 14 freshwater fluvial habitats on the North and South Islands, New Zealand. 2. We found evidence for strong genetic differentiation among locations (Wright's FST > 0.25), and fixed differences (non‐shared alleles) at two of the eight allozyme loci indicating the possibility of previously unknown species. Analysis of a 545‐bp fragment of the COI locus was mostly congruent with the allozyme data and revealed the same deeply divergent lineages (sequence divergences up to 26%). 3. Clear genetic breaks were identified between North Island and South Island populations. North Island populations separated by <100 km also showed genetic differences between east and west draining watersheds (sequence divergence >12%). Accordingly, present‐day dispersal among hydrologically isolated habitats appears minimal for this taxon. 4. Although population differences were clearly shown by allozyme and mtDNA analyses, individuals were morphologically indistinguishable. This suggests that, as in North American and European taxa (e.g. Hyalella and Gammarus), morphological conservatism may be prevalent among New Zealand's freshwater amphipods. We conclude that molecular techniques, particularly the COI gene locus, may be powerful tools for resolving species that show no distinctive morphological differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号