共查询到20条相似文献,搜索用时 15 毫秒
1.
Matthias J. Feige Susanne Nath Silvia R. Catharino Daniel Weinfurtner Stefan Steinbacher Johannes Buchner 《Journal of molecular biology》2009,391(3):599-40613
A prototypic IgG antibody can be divided into two major structural units: the antigen-binding fragment (Fab) and the Fc fragment that mediates effector functions. The IgG Fc fragment is a homodimer of the two C-terminal domains (CH2 and CH3) of the heavy chains. Characteristic of the Fc part is the presence of a sugar moiety at the inner face of the CH2 domains. The structure of this complex branched oligosaccharide is generally resolved in crystal structures of Fc fragments due to numerous well-defined sugar-protein interactions and a small number of sugar-sugar interactions. This suggested that sugars play an important role in the structure of the Fc fragment. To address this question directly, we determined the crystal structure of the unglycosylated Fc fragment of the murine IgG1 MAK33. The structures of the CH3 domains of the unglycosylated Fc fragment superimpose perfectly with the structure of the isolated MAK33 CH3 domain. The unglycosylated CH2 domains, in contrast, approach each other much more closely compared to known structures of partly deglycosylated Fc fragments with rigid-body motions between 10 and 14 Å, leading to a strongly “closed” conformation of the unglycosylated Fc fragment. The glycosylation sites in the C′E loop and the BC and FG loops are well defined in the unglycosylated CH2 domain, however, with increased mobility and with a significant displacement of about 4.9 Å for the unglycosylated Asn residue compared to the glycosylated structure. Thus, glycosylation both stabilizes the C′E-loop conformation within the CH2 domain and also helps to ensure an “open” conformation, as seen upon Fc receptor binding. These structural data provide a rationale for the observation that deglycosylation of antibodies often compromises their ability to bind and activate Fcγ receptors. 相似文献
2.
Understanding the underlying mechanisms of Fc aggregation is an important prerequisite for developing stable and efficacious antibody-based therapeutics. In our study, high resolution two-dimensional nuclear magnetic resonance (NMR) was employed to probe structural changes in the IgG1 Fc. A series of (1)H-(15)N heteronuclear single-quantum correlation NMR spectra were collected between pH 2.5 and 4.7 to assess whether unfolding of C(H)2 domains precedes that of C(H)3 domains. The same pH range was subsequently screened in Fc aggregation experiments that utilized molecules of IgG1 and IgG2 subclasses with varying levels of C(H)2 glycosylation. In addition, differential scanning calorimetry data were collected over a pH range of 3-7 to assess changes in C(H)2 and C(H)3 thermostability. As a result, compelling evidence was gathered that emphasizes the importance of C(H)2 stability in determining the rate and extent of Fc aggregation. In particular, we found that Fc domains of the IgG1 subclass have a lower propensity to aggregate compared with those of the IgG2 subclass. Our data for glycosylated, partially deglycosylated, and fully deglycosylated molecules further revealed the criticality of C(H)2 glycans in modulating Fc aggregation. These findings provide important insights into the stability of Fc-based therapeutics and promote better understanding of their acid-induced aggregation process. 相似文献
3.
Hai Pan Kenneth Chen Liping Chu Francis Kinderman Izydor Apostol Gang Huang 《Protein science : a publication of the Protein Society》2009,18(2):424-433
Susceptibility of methionine residues to oxidation is a significant issue of protein therapeutics. Methionine oxidation may limit the product's clinical efficacy or stability. We have studied kinetics of methionine oxidation in the Fc portion of the human IgG2 and its impact on the interaction with FcRn and Protein A. Our results confirm previously published observations for IgG1 that two analogous solvent‐exposed methionine residues in IgG2, Met 252 and Met 428, oxidize more readily than the other methionine residue, Met 358, which is buried inside the Fc. Met 397, which is not present in IgG1 but in IgG2, oxidizes at similar rate as Met 358. Oxidation of two labile methionines, Met 252 and Met 428, weakens the binding of the intact antibody with Protein A and FcRn, two natural protein binding partners. Both of these binding partners share the same binding site on the Fc. Additionally, our results shows that Protein A may serve as a convenient and inexpensive surrogate for FcRn binding measurements. 相似文献
4.
M V Hobbs E L Morgan R A Houghten M L Thoman W O Weigle 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(8):2581-2586
The synthetic peptide p23, representing residues 335 to 357 in the Fc region of human IgG1, was previously shown to induce Ig secretion in murine spleen cell cultures. In this report, overlapping peptides based on the sequence of p23 were synthesized to further map the active site in this molecule. The results from these studies indicate that leu-pro-pro-ser-arg (residues 351 to 355) retained the B cell differentiation-inducing properties of p23; however, expression of activity by this sequence was markedly influenced by N-flanking sequences. By using T cell-depleted spleen cell cultures, it was determined that at least two signals are required for p23-induced Ig secretion: one supplied by p23 directly and one supplied by a T cell-replacing factor present in p23-conditioned spleen cell supernatants. Both signals were mapped into the sequence leu-pro-pro-ser-arg. However, the latter signal, but not the former signal, again appeared to be influenced by sequences proximal to the active site. These data indicate that although the leu-pro-pro-ser-arg sequence is able to provide both required signals for p23-induced Ig secretion in spleen cell cultures, there may be subtle differences in how the cell types involved in this response interact with and/or are activated by this sequence. 相似文献
5.
Chumsae C Gaza-Bulseco G Sun J Liu H 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2007,850(1-2):285-294
Methionine (Met) oxidation is a major degradation pathway of protein therapeutics. Met oxidation of a fully human recombinant monoclonal antibody was investigated under both chemically stressed conditions using tert-butylhydroperoxide (tBHP) and thermal stability conditions where the sample was incubated in formulation buffer at 25 degrees C for 12 months. This antibody has one Met residue on each of the light chains and four Met residues on each of the heavy chains. In the thermal stability sample, only Met residues 256 and 432 in the Fc region were oxidized to form methionine sulfoxide, while Met residues in the Fab region were relatively stable. The susceptibility of Met residues 256 and 432 was further confirmed by incubating samples with tBHP, which has been shown to induce Met oxidation. Further analysis revealed that the susceptible Met residues of each heavy chain were randomly oxidized in samples incubated with tBHP, while in the thermal stability sample, the susceptible Met residues of one heavy chain were preferentially oxidized. 相似文献
6.
Induction of IL-1 secretion from human monocytes by Fc region subfragments of human IgG1 总被引:1,自引:0,他引:1
E L Morgan M V Hobbs D J Noonan W O Weigle 《Journal of immunology (Baltimore, Md. : 1950)》1988,140(9):3014-3020
Peripheral blood-derived human monocytes and the murine P388D1-monocytes-like cell line are induced to secrete IL-1 when stimulated with Fc region but not F(ab) region subfragments obtained from the cleavage of human IgG1 with papain or pepsin. The portion of the Fc region of IgG1 responsible for stimulation of IL-1 secretion appears to be located within the C gamma 3 domain of the molecule. This hypothesis is supported by the observation that the biologically active pepsin-derived pFc' subfragment is located within the C gamma 3 domain and the long-term papain digests containing predominately Fc' are also active. In contrast, short term papain digests containing mostly intact Fc fragments were found to be unable to induce IL-1 secretion. 相似文献
7.
8.
Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing Fc gamma RI and/or Fc gamma RII receptors. 总被引:4,自引:1,他引:4 下载免费PDF全文
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors. 相似文献
9.
Yan B Boyd D Kaschak T Tsukuda J Shen A Lin Y Chung S Gupta P Kamath A Wong A Vernes JM Meng GY Totpal K Schaefer G Jiang G Nogal B Emery C Vanderlaan M Carter P Harris R Amanullah A 《The Journal of biological chemistry》2012,287(8):5891-5897
Upper hinge is vulnerable to radical attacks that result in breakage of the heavy-light chain linkage and cleavage of the hinge of an IgG1. To further explore mechanisms responsible for the radical induced hinge degradation, nine mutants were designed to determine the roles that the upper hinge Asp and His play in the radical reactions. The observation that none of these substitutions could inhibit the breakage of the heavy-light chain linkage suggests that the breakage may result from electron transfer from Cys(231) directly to the heavy-light chain linkage upon radical attacks, and implies a pathway separate from His(229)-mediated hinge cleavage. On the other hand, the substitution of His(229) with Tyr showed promising advantages over the native antibody and other substitutions in improving the stability and function of the IgG1. This substitution inhibited the hinge cleavage by 98% and suggests that the redox active nature of Tyr did not enable it to replicate the ability of His to facilitate radical induced degradation. We propose that the lower redox potential of Tyr, a residue that may be the ultimate sink for oxidizing equivalents in proteins, is responsible for the inhibition. More importantly, the substitution increased the antibody's binding to FcγRIII receptors by 2-3-fold, and improved ADCC activity by 2-fold, while maintaining a similar pharmacokinetic profile with respect to the wild type. Implications of these observations for antibody engineering and development are discussed. 相似文献
10.
Dall'Acqua WF Woods RM Ward ES Palaszynski SR Patel NK Brewah YA Wu H Kiener PA Langermann S 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(9):5171-5180
Many biological functions, including control of the homeostasis and maternofetal transfer of serum gamma-globulins, are mediated by the MHC class I-related neonatal FcR (FcRn). A correlation exists in mice between the binding affinity of IgG1/Fc fragments to FcRn at pH 6.0 and their serum t(1/2). To expand this observation, phage display of mutagenized Fc fragments derived from a human IgG1 was used to increase their affinity to both murine and human FcRn. Ten variants were identified that have a higher affinity toward murine and human FcRn at pH 6.0, with DeltaDeltaG (DeltaG(wild type) - DeltaG(mutant)) from 1.0 to 2.0 kcal/mol and from 0.6 to 2.4 kcal/mol, respectively. Those variants exhibit a parallel increase in binding at pH 7.4 to murine, but not human, FcRn. Although not degraded in blood in vitro, accumulated in tissues, nor excreted in urine, their serum concentration in mice is decreased. We propose that higher affinity to FcRn at pH 7.4 adversely affects release into the serum and offsets the benefit of the enhanced binding at pH 6.0. 相似文献
11.
12.
K Kobayashi M J Blaser W R Brown 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(8):2567-2574
In experiments to determine whether serum antibodies in patients with Crohn's disease could be used as probes for detecting potentially etiologic Ag in the patients' tissues, we found that peroxidase (HRP)-labeled IgG from healthy persons, as well as from the patients, bound to normal colonic and small intestinal epithelium, mostly or entirely to goblet cells. The binding was due to a reaction involving the Fc region of IgG because HRP-labeled Fc fragments of IgG bound, but HRP-Fab, HRP-IgA, and HRP-bovine albumin did not, and because binding of HRP-IgG was inhibited competitively by unlabeled IgG or Fc fragments but not by IgG Fab fragments or IgA. These immunohistochemical results were confirmed by ELISA with microtiter wells coated with a sonicated homogenate from human colonocytes. The epithelial IgG Fc binding site was characterized by SDS-PAGE as consisting of a high Mr (greater than 200,000 Da) and a 78,000-Da component. It bound all four subclasses of human IgG and bound aggregated as well as monomeric IgG. It is distinct from known human Fc-gamma R by lack of recognition by mAb to those receptors and differences in affinity for various subclasses of human and murine IgG. This unique IgG Fc binding site might be involved in immunologic defense of the gut, perhaps by mediating reactions between foreign Ag and the contents of goblet cells. 相似文献
13.
Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc 总被引:10,自引:0,他引:10
Idusogie EE Presta LG Gazzano-Santoro H Totpal K Wong PY Ultsch M Meng YG Mulkerrin MG 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(8):4178-4184
Rituxan (Rituximab) is a chimeric mAb with human IgG1 constant domains used in the therapy of non-Hodgkin's B cell lymphomas. This Ab targets B cells by binding to the cell-surface receptor, CD20. In our investigation of the mechanism of B cell depletion mediated by Rituximab, we first constructed mutants of Rituximab defective in complement activation but with all other effector functions intact. Our results demonstrate that the previously described C1q binding motif in murine IgG2b constituting residues E318, K320, and K322 is not applicable to a human IgG1 when challenged with either human, rabbit, or guinea pig complement. Alanine substitution at positions E318 and K320 in Rituximab had little or no effect on C1q binding and complement activation, whereas alanine substitution at positions D270, K322, P329, and P331 significantly reduced the ability of Rituximab to bind C1q and activate complement. We have also observed that concentrations of complement approaching physiological levels are able to rescue >60% of the activity of these mutant Abs with low affinity for C1q. These data localize the C1q binding epicenter on human IgG1 and suggest that there are species-specific differences in the C1q binding site of Igs. 相似文献
14.
Shields RL Namenuk AK Hong K Meng YG Rae J Briggs J Xie D Lai J Stadlen A Li B Fox JA Presta LG 《The Journal of biological chemistry》2001,276(9):6591-6604
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy. 相似文献
15.
We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of T(m) of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the T(m) of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the T(m) of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule. 相似文献
16.
Thirumangalathu R Krishnan S Bondarenko P Speed-Ricci M Randolph TW Carpenter JF Brems DN 《Biochemistry》2007,46(21):6213-6224
Oxidation of methionine residues is involved in several biochemical processes and in degradation of therapeutic proteins. The relationship between conformational stability and methionine oxidation in recombinant human interleukin-1 receptor antagonist (rhIL-1ra) was investigated to document how thermodynamics of unfolding affect methionine oxidation in proteins. Conformational stability of rhIL-1ra was monitored by equilibrium urea denaturation, and thermodynamic parameters of unfolding (DeltaGH2O, m, and Cm) were estimated at different temperatures. Methionine oxidation induced by hydrogen peroxide at varying temperatures was monitored during "coincubation" of rhIL-1ra with peptides mimicking specific regions of the reactive methionine residues in the protein. The coincubation study allowed estimation of oxidation rates in protein and peptide at each temperature from which normalized oxidation rate constants and activation energies were calculated. The rate constants for buried Met-11 in the protein were lower than for methionine in the peptide with an associated increase in activation energy. The rate constants and activation energy of solvent exposed methionines in protein and peptide were similar. The results showed that conformational stability, monitored using the Cm value, has an effect on oxidation rates of buried methionines. The rate constant of buried Met-11 correlated well with the Cm value but not DeltaGH2O. No correlation was observed for the oxidation rates of solvent-exposed methionines with any thermodynamic parameters of unfolding. The findings presented have implications in protein engineering, in design of accelerated stability studies for protein formulation development, and in understanding disease conditions involving protein oxidation. 相似文献
17.
Modulation of human polymorphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated functions by IFN-gamma and glucocorticoids 总被引:11,自引:0,他引:11
Human polymorphonuclear neutrophils (PMN) normally express two distinct types of IgG Fc gamma R, the 40-kDa Fc gamma R referred to as Fc gamma RII and the low affinity 50- to 70-kDa Fc gamma R designated Fc gamma RIII. A third type of Fc gamma R, the 72-kDa high affinity receptor known as Fc gamma RI, is also detectable on PMN that have been activated by IFN-gamma. Using mAb that discriminate among the three known types of Fc gamma R, we examined the effects of IFN-gamma and glucocorticoids on human PMN Fc gamma R expression. We also studied effects of IFN-gamma and the synthetic glucocorticoid dexamethasone (DEX) on antibody-dependent cytotoxicity (ADCC) of chicken erythrocytes and phagocytosis of IgG-coated ox RBC by human PMN. In 20 donors studied, we found that treatment of PMN with 400 U/ml IFN-gamma induced a 9- to 20-fold increase in the number of Fc gamma RI sites per cell, and DEX inhibited this induction of Fc gamma RI by 39 to 73%. Similarly, DEX significantly reduced the IFN-gamma stimulation of ADCC and phagocytosis. IFN-gamma had no effect on expression of Fc gamma RII or Fc gamma RIII. Fc gamma RI and Fc gamma RII expression was unaltered by 24 h of treatment with DEX alone, but Fc gamma RIII expression was sometimes increased by about 20% on PMN cultured with DEX. Nevertheless, we found a small but significant inhibition of ADCC and phagocytosis by 200 nM DEX. Our results indicate that Fc gamma RI plays a major but not exclusive role in the regulation of ADCC and phagocytosis by IFN-gamma and DEX. 相似文献
18.
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product. 相似文献
19.
J Gao D H Yin Y Yao H Sun Z Qin C Schneich T D Williams T C Squier 《Biophysical journal》1998,74(3):1115-1134
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM. 相似文献
20.
alpha 1-Antitrypsin is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors. Although it is known that methionine oxidation in the protein's active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of each of the protein's methionine residues. In this study, we have used peptide mapping to study the oxidation kinetics of each of alpha 1-antitrypsin's methionines in alpha 1-AT((C232S)) as well as M351L and M358V mutants. These kinetic studies establish that Met1, Met226, Met242, Met351, and Met358 are reactive with hydrogen peroxide at neutral pH and that each reactive methionine is oxidized in a bimolecular, rather than coupled, mechanism. Analysis of Met226, Met351, and Met358 oxidation provides insights regarding the structure of alpha 1-antitrypsin's active site that allow us to relate conformation to experimentally observed reactivity. The relationship between solution pH and methionine oxidation was also examined to evaluate methionine reactivity under conditions that perturb the native structure. Methionine oxidation data show that at pH 5, global conformational changes occur that alter the oxidation susceptibility of each of alpha 1-antitrypsin's 10 methionine residues. Between pH 6 and 9, however, more localized conformational changes occur that affect primarily the reactivity of Met242. In sum, this work provides a detailed analysis of methionine oxidation in alpha 1-antitrypsin and offers new insights into the protein's solution structure. 相似文献