首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially quarternized poly(methacrylate) terpolymers (Q-BBMCs) have been synthesized, based on the basic butylated methacrylate copolymer (BBMC/EUDRAGIT E), an excipient approved by the Food and Drug Administration (FDA) and to date mainly applied for tablet coatings. Via straightforward polymer modification reactions, a series of Q-BBMCs with quarternization degrees of 22%, 42%, and 65% has been prepared. Apical to basolateral transport across Caco-2 cell monolayers was investigated, employing the paracellular transported compounds trospium and mannitol. At pH 6.5 quarternization resulted in increased permeation enhancement up to 2.8-fold compared to BBMC, that is, up to 7.3-fold compared to control. Moreover, measurements of the transepithelial electrical resistance (TEER) revealed a special advantage of the quarternized poly(methacrylate) terpolymers with respect to the pH range, in which the polymers exhibit biological activity as permeation enhancers. Whereas at pH 6.5 TEER dropped within 30 min below 30% of the initial value for all polymers, at pH 7.4 this effect solely occurred for Q-BBMCs, meaning a significant extension of the pH range relevant for drug permeation. In a subsequent period of 6 h, also excellent recovery was observed.  相似文献   

2.
The multidrug transporter MDR1 (P-glycoprotein)-mediated interaction between digoxin and 29 antihypertensive drugs of various types was examined by using the MDR1 overexpressing LLC-GA5-COL150 cells, which were established by transfecting MDR1 cDNA into porcine kidney epithelial LLC-PK1 cells. These cells construct monolayers with tight junctions, and enable the evaluation of transcellular transport. The MDR1 was highly expressed on the apical membrane (urine side). The basal-to-apical and apical-to-basal transcellular transport of [3H]digoxin in LLC-GA5-COL150 cells was time- and temperature-dependent. The basal-to-apical transport of [3H]digoxin was markedly increased, whereas the apical-to-basal transport was decreased in LLC-GA5-COL150 cells, compared with the host LLC-PK1 cells, suggesting that [3H]digoxin was a substrate for MDR1. Most of the Ca2+ channel blockers used here markedly inhibited basal-to-apical transport and increased apical-to-basal transport. Exceptions were diltiazem, nifedipine and nitrendipine, which hardly showed inhibitory effects on transcellular transport of [3H]digoxin. Alpha-blocker doxazosin and beta-blocker carvedilol also inhibited transcellular transport of [3H]digoxin, but none of the angiotensin converting enzyme inhibitors and AT1 angiotensin II receptor antagonists used here were active. These observations will promote understanding of the digoxin-drug interactions resulting from their actions on MDR1, and which may aid in avoiding these unexpected effects of digoxin.  相似文献   

3.
4.
5.
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life‐sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo‐like values for trans‐endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long‐distance transport of membrane‐bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the “Multi‐Organ‐on‐Chip” devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257–1266, 2017  相似文献   

6.
《The Journal of cell biology》1990,111(6):2893-2908
A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior accessible to exogenous macromolecules and impermeant reagents, permitting the examination of their effects on membrane protein transport to the intact surface. The last stages of the transport of the influenza virus hemagglutinin (HA) to the apical surface were studied in pulse-labeled, virus-infected MDCK cells that were incubated at 19.5 degrees C for 90 min to accumulate newly synthesized HA in the trans-Golgi network (TGN), before raising the temperature to 35 degrees C to allow synchronized transport to the plasma membrane. In cells permeabilized immediately after the cold block, 50% of the intracellular HA molecules were subsequently delivered to the apical surface. This transport was dependent on the presence of an exogenous ATP supply and was markedly inhibited by the addition of GTP-gamma-S at the time of permeabilization. On the other hand, the GTP analogue had no effect when it was added to cells that, after the cold block, were incubated for 15 min at 35 degrees C before permeabilization, even though at this time most HA molecules were still intracellular and their appearance at the cell surface was largely dependent on exogenous ATP. These findings indicate that GTP-binding proteins are involved in the constitutive process that effects vesicular transport from the TGN to the plasma membrane and that they are charged early in this process. Transport of HA to the cell surface could be made dependent on the addition of exogenous cytosol when, after permeabilization, cells were washed to remove endogenous cytosolic components. This opens the way towards the identification of cell components that mediate the sorting of apical and basolateral membrane components in the TGN and their polarized delivery to the cell surface.  相似文献   

7.
Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products.  相似文献   

8.
Keratin 8 (K8) and keratin-18 (K18) are the major intermediate filament proteins in the intestinal epithelia. The regulation and function of keratin in the intestinal epithelia is largely unknown. In this study we addressed the role and regulation of K8 and K18 expression by interleukin 6 (IL-6). Caco2-BBE cell line and IL-6 null mice were used to study the effect of IL-6 on keratin expression. Keratin expression was studied by Northern blot, Western blot, and confocal microscopy. Paracellular permeability was assessed by apical-to-basal transport of a fluorescein isothiocyanate dextran probe (FD-4). K8 was silenced using the small interfering RNA approach. IL-6 significantly up-regulated mRNA and protein levels of K8 and K18. Confocal microscopy showed a reticular pattern of intracellular keratin localized to the subapical region after IL-6 treatment. IL-6 also induced serine phosphorylation of K8. IL-6 decreased paracellular flux of FD-4 compared with vehicle-treated monolayers. K8 silencing abolished the decrease in paracellular permeability induced by IL-6. Administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6-/- mice compared with wild type mice given DSS. Collectively, our data demonstrate that IL-6 regulates the colonic expression of K8 and K18, and K8/K18 mediates barrier protection by IL-6 under conditions where intestinal barrier is compromised. Thus, our data uncover a novel function of these abundant cytoskeletal proteins, which may have implications in intestinal disorders such as inflammatory bowel disease wherein barrier dysfunction underlies the inflammatory response.  相似文献   

9.
We have developed a bilayer microfluidic system with integrated transepithelial electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells under physiologically relevant fluid flow conditions. The bioreactor consists of apical and basolateral fluidic chambers connected via a transparent microporous membrane. The top chamber contains microfluidic channels to perfuse the apical surface of the cells. The bottom chamber acts as a reservoir for transport across the cell layer and provides support for the membrane. TEER electrodes were integrated into the device to monitor cell growth and evaluate cell–cell tight junction integrity. Immunofluorescence staining was performed within the microchannels for ZO‐1 tight junction protein and acetylated α‐tubulin (primary cilia) using human renal epithelial cells (HREC) and MDCK cells. HREC were stained for cytoskeletal F‐actin and exhibited disassembly of cytosolic F‐actin stress fibers when exposed to shear stress. TEER was monitored over time under normal culture conditions and after disruption of the tight junctions using low Ca2+ medium. The transport rate of a fluorescently labeled tracer molecule (FITC‐inulin) was measured before and after Ca2+ switch and a decrease in TEER corresponded with a large increase in paracellular inulin transport. This bioreactor design provides an instrumented platform with physiologically meaningful flow conditions to study various epithelial cell transport processes. Biotechnol. Bioeng. 2010;107:707–716. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products.  相似文献   

11.
We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells.These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.  相似文献   

12.
In this study, a novel nanoparticle system for paracellular transport was prepared using a simple and mild ionic-gelation method upon addition of a poly-gamma-glutamic acid (gamma-PGA) solution into a low-molecular-weight chitosan (low-MW CS) solution. The particle size and the zeta potential value of the prepared nanoparticles can be controlled by their constituted compositions. The results obtained by the TEM and AFM examinations showed that the morphology of the prepared nanoparticles was spherical in shape. Evaluation of the prepared nanoparticles in enhancing intestinal paracellular transport was investigated in vitro in Caco-2 cell monolayers. It was found that the nanoparticles with CS dominated on the surfaces could effectively reduce the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers. After removal of the incubated nanoparticles, a gradual increase in TEER was noticed. The confocal laser scanning microscopy observations confirmed that the nanoparticles with CS dominated on the surface were able to open the tight junctions between Caco-2 cells and allowed transport of the nanoparticles via the paracellular pathways.  相似文献   

13.
《The Journal of cell biology》1995,128(6):1131-1144
Immunofluorescence microscopy revealed the presence of protein phosphatase 2A (PP2A) on microtubules in neuronal and nonneuronal cells. Interphase and mitotic spindle microtubules, as well as centrosomes, were all labeled with antibodies against individual PP2A subunits, showing that the AB alpha C holoenzyme is associated with microtubules. Biochemical analysis showed that PP2A could be reversibly bound to microtubules in vitro and that approximately 75% of the PP2A in cytosolic extracts could interact with microtubules. The activity of microtubule-associated PP2A was differentially regulated during the cell cycle. Enzymatic activity was high during S phase and intermediate during G1, while the activity in G2 and M was 20-fold lower than during S phase. The amount of microtubule-bound PP2A remained constant throughout the cell cycle, implying that cell cycle regulation of its enzymatic activity involves factors other than microtubules. These results raise the possibility that PP2A regulates cell cycle-dependent microtubule functions, such as karyokinesis and membrane transport.  相似文献   

14.
Cell volume regulation by thyrotropin (TSH) and iodide, the main effectors involved in thyroid function, was studied in cultured thyroid cells. The mean cell volume, determined by performing 3-D reconstitution on confocal microscopy optical slices from living octadecylrhodamine-labeled cells cultured with both TSH and iodide (control cells), was 3.73 +/- 0.06 pl. The absence of iodide resulted in cell hypertrophy (136% of control value) and the absence of TSH in cell shrinkage (81%). These changes mainly affected the cell heights. The effect of TSH on cell volume was mediated by cAMP. The proportion of cytosolic volume (3-O-methyl-D-glucose space vs. total volume) decreased in the absence of iodide (85% of control value) and increased in the absence of TSH (139%), whereas protein content showed the opposite changes (121 and 58%, respectively). The net apical-to-basal fluid transport was also inversely controlled by the two effectors. Iodide thus antagonizes TSH effects on cell volumes and fluid transport, probably via adenylylcyclase downregulation mechanisms. The absence of either iodide or TSH may mimic the imbalance occurring in pathological thyroids.  相似文献   

15.
Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.  相似文献   

16.
Wu J  Lin L 《Biotechnology progress》2002,18(4):862-866
The stress metabolic activities of Panax ginseng (P. ginseng) cells induced by low-energy ultrasound (US) were examined. P. ginseng cells in suspension cultures were exposed to 38.5 kHz US at two power levels (power density 13.7 and 61 mW/cm(3)) for 2 min. The US treatment caused rapid increase in the intracellular levels of polyphenol oxidase (PPO), peroxidase (PO), and phenylalanine ammonia lyase (PAL) and the production of polyphenols (PP) and phenolic compounds. The US-induced enzyme activities and phenolics production are part of plant stress responses to a mechanical stimulus. The much higher PPO activity and rate of PP production in the sonicated cultures are correlated to enzymatic browning, suggestive of physical damage and membrane permeabilization of the cells by US. The cells after sonication also showed decreased water content and cell volume, which may also be attributed to US-induced cell membrane permeabilization and water release. High-pressure shock and fluid shear stress arising from acoustic cavitation were regarded as the major causes of the responses. Nevertheless, the US exposure caused only temporary cell growth depression but no net loss of biomass yield of the culture.  相似文献   

17.
It is widely reported that the Ca(2+) increase following nonspecific cell membrane permeabilization is among the earliest biochemical modifications in cells exposed to toxic amyloid aggregates. However, more recently receptors with Ca(2+) channel activity such as alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl D-aspartate (NMDA), ryanodine, and inositol 1,4,5-trisphosphate receptors have been proposed as mediators of the Ca(2+) increase in neuronal cells challenged with beta-amyloid peptides. We previously showed that prefibrillar aggregates of proteins not associated with amyloid diseases are toxic to exposed cells similarly to comparable aggregates of disease-associated proteins. In particular, prefibrillar aggregates of the prokaryotic HypF-N were shown to be toxic to different cultured cell lines by eliciting Ca(2+) and reactive oxygen species increases. This study was aimed at assessing whether NMDA and AMPA receptor activations could be considered a generic feature of cell interaction with amyloid aggregates rather than a specific effect of some aggregated protein. Therefore, we investigated whether NMDA and AMPA receptors were involved in the Ca(2+) increase following exposure of rat cerebellar granule cells to HypF-N prefibrillar aggregates. We found that the intracellular Ca(2+) increase was associated with the early activation of NMDA and AMPA receptors, although some nonspecific membrane permeabilization was also observed at longer times of exposure. This result matched a significant co-localization of the aggregates with both receptors on the plasma membrane. Our data support the possibility that glutamatergic channels are generic sites of interaction with the cell membrane of prefibrillar aggregates of different peptides and proteins as well as the key structures responsible for the resulting early membrane permeabilization to Ca(2+).  相似文献   

18.
19.
Photodynamic therapy (PDT), a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in human epidermoid carcinoma A431 cells. However, the precise mechanism of PDT-induced apoptosis is not well characterized. To dissect the pathways of PDT-induced apoptosis, we investigated the involvement of mitochondrial damage by examining a second generation photosensitizer, the silicon phthalocyanine 4 (Pc 4). By using laser-scanning confocal microscopy, we found that Pc 4 localized to cytosolic membranes primarily, but not exclusively, in mitochondria. Formation of mitochondrial reactive oxygen species (ROS) was detected within minutes when cells were exposed to Pc 4 and 670-675 nm light. This was followed by mitochondrial inner membrane permeabilization, depolarization and swelling, cytochrome c release, and apoptotic death. Desferrioxamine prevented mitochondrial ROS production and the events thereafter. Cyclosporin A plus trifluoperazine, blockers of the mitochondrial permeability transition, inhibited mitochondrial inner membrane permeabilization and depolarization without affecting mitochondrial ROS generation. These data indicate that the mitochondrial ROS are critical in initiating mitochondrial inner membrane permeabilization, which leads to mitochondrial swelling, cytochrome c release to the cytosol, and apoptotic death during PDT with Pc 4.  相似文献   

20.
Changes in growth kinetics and metabolic activity of microorganisms under the presence of a moderate electric field (MEF) have been hypothesized as being due to temporary permeabilization of cell membranes. We investigated herein the effects of frequency and growth stage on cell membrane permeabilization of Lactobacillus acidophilus OSU 133 during MEF fermentation. Cells were stained with two fluorescent nucleic acid stains: the green, nonselective, cell membrane permeable SYTO 9, and the red, cell membrane impermeable propidium iodide (PI). Fluorescence exhibition post‐treatment was assessed using fluorescence microscopy. Total plate counting was done to determine whether or not the permeabilized population represented live cells. Fermentation treatments investigated were conventional (control) and MEF (2 V/cm, 45, 60, 1,000, 10,000 Hz) at 30°C. Studies were conducted at 45 Hz for lag, exponential, and stationary phases of growth. Low frequency MEF treated cells exhibited significantly greater numbers of red cell counts than conventional treatments; further, no significant differences existed in viable counts between MEF and conventional treatments, suggesting that the red counts represent permeabilized live cells. MEF treatments at the early stage of bacterial growth at 45 Hz exhibited the maximum permeabilization followed by treatments at 60 Hz. MEF treated samples at frequencies higher than 60 Hz did not exhibit red fluorescence. Cells at lag phase showed the greatest susceptibility to permeabilization followed by those at exponential phase. No evidence of electroporation was observed during the stationary phase. To our knowledge, these observations provide the first evidence that cell membrane permeabilization occurs under the presence of electric fields as low as those under MEF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号