首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structures of the two peptides, lactococcin G-alpha (LcnG-alpha; contains 39 residues) and lactococcin G-beta (LcnG-beta, contains 35 residues), that constitute the two-peptide bacteriocin lactococcin G (LcnG) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles and TFE. In DPC, LcnG-alpha has an N-terminal alpha-helix (residues 3-21) that contains a GxxxG helix-helix interaction motif (residues 7-11) and a less well defined C-terminal alpha-helix (residues 24-34), and in between (residues 18-22) there is a second somewhat flexible GxxxG-motif. Its structure in TFE was similar. In DPC, LcnG-beta has an N-terminal alpha-helix (residues 6-19). The region from residues 20 to 35, which also contains a flexible GxxxG-motif (residues 18-22), appeared to be fairly unstructured in DPC. In the presence of TFE, however, the region between and including residues 23 and 32 formed a well defined alpha-helix. The N-terminal helix between and including residues 6 and 19 seen in the presence of DPC, was broken at residues 8 and 9 in the presence of TFE. The N-terminal helices, both in LcnG-alpha and -beta, are amphiphilic. We postulate that LcnG-alpha and -beta have a parallel orientation and interact through helix-helix interactions involving the first GxxxG (residues 7-11) motif in LcnG-alpha and the one (residues 18-22) in LcnG-beta, and that they thus lie in a staggered fashion relative to each other.  相似文献   

2.
To analyze the orientation in target cell membranes of the pediocin-like bacteriocin (antimicrobial peptide) curvacin A, 55 variants were generated by site-directed mutagenesis and their potencies against four different target cells determined. The result suggest that the somewhat hydrophilic short central helix (residues 19 to 24), along with the N-terminal β-sheet-like structure (residues 1 to 16), inserts in the interface region of the target cell membrane, with Ala22 close to the hydrophobic core of the membrane. The following hinge region, with Gly28 as an important residue, may then form a turn wherein Gly28 becomes positioned near the border between the interface and the hydrophobic regions, thus permitting the longer and more-hydrophobic C-terminal helix (residues 29 to 41) to insert into the hydrophobic core of the membrane. This helix contains three glycine residues (G33, G37, and G40) that form a putative helix-helix-interacting GxxxGxxG motif. The replacement of any of these glycines with a larger residue was very detrimental, suggesting their possible involvement in helix-helix interactions with a membrane-embedded receptor protein.  相似文献   

3.
Divercin V41 (DV41) is a class IIa bacteriocin produced by Carnobacterium divergens V41. This antilisterial peptide is homologous to pediocin PA-1 and contains two disulfide bonds. To establish the structure-activity relationships of this specific family of bacteriocin, chemical modifications and enzymatic hydrolysis were performed on DV41. Alteration of the net charge of this cationic bacteriocin by succinylation and acetylation revealed that, in a certain range, the electrostatic interactions were surprisingly not necessary for the activity of DV41. Cleavage of DV41 by endoproteinase Asp-N released two fragments N1[1-17] and N2[18-43] corresponding to the conserved hydrophilic N-terminal and the variable hydrophobic C-terminal sequences, respectively. Inhibitory assays showed that only the C-terminal fragment was active, and after trypsin cleavage at Lys42 or disulfide reduction it lost its inhibitory activity. These results suggested that both hydrophobicity and folding imposed by the Cys25-Cys43 disulfide bond were essential for antilisterial activity of the C-terminal hydrophobic peptide. Chemical oxidation of tryptophan residues by N-bromosuccinimide demonstrated that these residues were crucial for inhibitory activity since modification of any one of them rendered DV41 inactive. On the contrary, only the modification of all the three tyrosine residues caused a total loss of antilisterial activity. These latter results strengthened previous results suggesting that the N-terminal domain containing the YGNGV consensus sequence was not involved in the binding of DV41 to a potential specific receptor on listerial cells.  相似文献   

4.
The bacteriocins pediocin PA-1 and lactococcin A are synthesized as precursors carrying N-terminal extensions with a conserved cleavage site preceded by two glycine residues in positions -2 and -1. Each bacteriocin is translocated through the cytoplasmic membrane by an integral membrane protein of the ABC cassette superfamily which, in the case of pediocin PA-1, has been shown to possess peptidase activity responsible for proteolytic cleavage of the pre-bacteriocin. In each case, another integral membrane protein is essential for bacteriocin production. In this study, a two-step PCR approach was used to permutate the leaders of pediocin PA-1 and lactococcin A. Wild-type and chimeric pre-bacteriocins were assayed for maturation by the processing/export machinery of pediocin PA-1 and lactococcin A. The results show that pediocin PA-1 can be efficiently exported by the lactococcin machinery whether it carries the lactococcin or the pediocin leader. It can also compete with wild-type lactococcin A for the lactococcin machinery. Pediocin PA-1 carrying the lactococcin A leader or lactococcin A carrying that of pediocin PA-1 was poorly secreted when complemented with the pediocin PA-1 machinery, showing that the pediocin machinery is more specific for its bacteriocin substrate. Wild-type pre-pediocin and chimeric pre-pediocin were shown to be processed by the lactococcin machinery at or near the double-glycine cleavage site. These results show the potential of the lactococcin LcnC/LcnD machinery as a maturation system for peptides carrying double-glycine-type amino-terminal leaders.  相似文献   

5.
The three-dimensional structures of the two peptides, PlnJ and PlnK, that constitutes the two-peptide bacteriocin plantaricin JK have been solved in water/TFE and water/DPC-micellar solutions using nuclear magnetic resonance (NMR) spectroscopy. PlnJ, a 25 residue peptide, has an N-terminal amphiphilic α-helix between Trp-3 and Tyr-15. The 32 residues long PlnK forms a central amphiphilic α-helix between Gly-9 and Leu-24. Measurements of the effect on anti-microbial activity of single glycine replacements in PlnJ and PlnK show that Gly-13 and Gly-17 in both peptides are very sensitive, giving more than a 100-fold reduction in activity when large residues replace glycine. In variants where other glycine residues, Gly-20 in PlnJ and Gly-7, Gly-9, Gly-24 and Gly-25 in PlnK, were replaced, the activity was reduced less than 10-fold. It is proposed that the detrimental effect on activity when exchanging Gly-13 and Gly-17 in PlnJ and PlnK is a result of reduced ability of the two peptides to interact through the GxxxG-motifs constituting Gly-13 and Gly-17.  相似文献   

6.
The influence of chemical modification on the biological properties of the bacteriocin cloacin DF13 has been investigated. All chemical modifications resulted in the total loss of the ability of the bacteriocin to kill sensitive bacterial cells. The ability of the bacteriocin to bind to specific receptor sites on sensitive bacteria was affected by the modification of carboxyl groups with glycine ethyl ester (GEE) and by the oxidation of tryptophan residues with N-bromosuccinimide (NBS). The endoribonucleolytic activity of the bacteriocin was affected by nitration of tyrosine residues with tetranitromethane (TNM) or by the oxidation of tryptophan residues with NBS. Binding of immunity protein to the cloacin was not affected by either of these modifications.  相似文献   

7.
Lactococcin G and enterocin 1071 are two homologous two-peptide bacteriocins. Expression vectors containing the gene encoding the putative lactococcin G immunity protein (lagC) or the gene encoding the enterocin 1071 immunity protein (entI) were constructed and introduced into strains sensitive to one or both of the bacteriocins. Strains that were sensitive to lactococcin G became immune to lactococcin G when expressing the putative lactococcin G immunity protein, indicating that the lagC gene in fact encodes a protein involved in lactococcin G immunity. To determine which peptide or parts of the peptide(s) of each bacteriocin that are recognized by the cognate immunity protein, combinations of wild-type peptides and hybrid peptides from the two bacteriocins were assayed against strains expressing either of the two immunity proteins. The lactococcin G immunity protein rendered the enterococcus strain but not the lactococcus strains resistant to enterocin 1071, indicating that the functionality of the immunity protein depends on a cellular component. Moreover, regions important for recognition by the immunity protein were identified in both peptides (Lcn-α and Lcn-β) constituting lactococcin G. These regions include the N-terminal end of Lcn-α (residues 1 to 13) and the C-terminal part of Lcn-β (residues 14 to 24). According to a previously proposed structural model of lactococcin G, these regions will be positioned adjacent to each other in the transmembrane helix-helix structure, and the model thus accommodates the present results.Lactic acid bacteria (LAB) produce ribosomally synthesized antimicrobial peptides, generally referred to as bacteriocins. There are two main classes of these bacteriocins (8, 22): the class I bacteriocins (often referred to as lantibiotics) that contain the modified amino acid residues lanthionine and/or β-methyllanthionine and the class II bacteriocins that lack modified residues (8). The class II bacteriocins are further divided into four subclasses, IIa, IIb, IIc, and IId (8). Class IIa contains the pediocin-like bacteriocins, which have very similar amino acid sequences, class IIc consists of the cyclic bacteriocins, and the one-peptide, noncyclic bacteriocins that show no sequence similarity to the pediocin-like bacteriocins are placed in class IId (8). The unmodified two-peptide bacteriocins are placed in class IIb. They are unique in that they consist of two different peptides, both of which must be present, in about equal amounts, to obtain optimal antimicrobial activity (25). More than 10 two-peptide bacteriocins have been isolated and characterized (see reference 25 for original references) since the first isolation of such a bacteriocin (lactococcin G) in 1992 (21). For the two-peptide bacteriocins that have been genetically characterized, the genes encoding the two bacteriocin peptides are always found next to each other in the same operon, along with the gene encoding the immunity protein that protects the bacteriocin producer from being killed by its own bacteriocin.Lactococcin G is perhaps the best-characterized two-peptide bacteriocin (12, 18, 19, 21, 24, 26, 27). It consists of the 39-residue α peptide (termed Lcn-α) and the 35-residue β peptide (termed Lcn-β) (Fig. (Fig.1A).1A). Like all two-peptide bacteriocins whose mode of action has been studied, lactococcin G causes cell death by rendering the membranes of target cells permeable to various ions (18, 19). Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy have revealed that the two lactococcin G peptides adopt mainly α-helical structures when they are individually exposed to membrane-like entities (12, 27). Based on the NMR structures and findings from site-directed mutagenesis studies, a structural model of lactococcin G has recently been proposed (23, 26, 27). In this model, the two complementary peptides form parallel helices that span the target cell membrane. The helix-helix segment consists of the N-terminal region of Lcn-α (from about Trp-3 to Gly-22) and the C-terminal region of Lcn-β (from about Tyr-13 to Trp-32). The model also proposes that the cationic C-terminal end (residues 35 to 39, R-K-K-K-H) of Lcn-α is unstructured and forced through the target cell membrane by the membrane potential, thereby positioning the C termini of the two peptides inside the target-cell (Fig. (Fig.2).2). The tryptophan-rich N-terminal end of Lcn-β is also proposed to be relatively unstructured and to position itself in the outer membrane interface, thus forcing the N termini of the two peptides to remain on the outer side of the target cell membrane and the helix-helix segment to transverse the membrane (Fig. (Fig.2).2). This proposed structure is presumably also valid for the two-peptide bacteriocins enterocin 1071 (4, 5, 11), enterocin C (17), and lactococcin Q (32), since their sequence similarities to lactococcin G (lactococcin G has about 88 and 57% sequence identity to lactococcin Q and enterocin 1071, respectively; enterocin 1071 and enterocin C are identical except for one residue) indicate that these four bacteriocins have similar three-dimensional structures.Open in a separate windowFIG. 1.(A) Amino acid sequence alignment of enterocin 1071 (peptides Ent1071A and Ent1071B) and lactococcin G (peptides Lcn-α and Lcn-β) and the cognate immunity proteins (Ent1071im and LcnGim, respectively). Ent1071A and Lcn-α show 59% sequence identity, whereas Ent1071B and Lcn-β show 54% sequence identity. The immunity proteins consist of 110 amino acid residues each and show 38% sequence identity. Identical amino acid residues are colored in red. (B) Amino acid sequences of the two hybrid peptides. The Lcn-α-Ent1071A hybrid peptide (α-hybrid) is termed α[1-16]/A[14-39] in this study (it is designated α2-4 in reference 24). Residues are numbered according to the corresponding amino acid positions in Lcn-α (Fig. 1A). Residues in orange are derived from Lcn-α, and residues in blue are derived from Ent1071A. The overlapping region (i.e., residues 14 to 16) is marked in red, and this region consists of residues that are identical in Lcn-α and Ent1071A. The α-hybrid peptide contains an additional lysine residue in the C-terminal end derived from Lcn-α (see reference 24 for the construction of the hybrid peptide). The Lcn-β-Ent1071B hybrid peptide (β-hybrid) is termed β[1-13]/B[11-35] in this study (it is designated β1-6 in reference 24). Residues in orange are derived from Lcn-β, and residues in blue are derived from Ent1071B. The overlapping region (i.e., residues 11 to 13) is marked in red, and residues in this region are identical in Lcn-β and Ent1071B.Open in a separate windowFIG. 2.Proposed structural model of lactococcin G. The two peptides (Lcn-α and Lcn-β) form a transmembrane helix-helix structure, with the flexible tryptophan-rich N-terminal end of Lcn-β positioned in the outer membrane interface and the unstructured, highly cationic C-terminal end of Lcn-α inside the target cell membrane. The transmembrane helix-helix segment consists of the N-terminal region of Lcn-α (from about Trp-3 to Gly-22) and the C-terminal region of Lcn-β (from about Tyr-13 to Trp-32). (Adapted from reference 26 with permission of the publisher. Copyright 2008 American Chemical Society.)The sequence of the lactococcin G operon (GenBank accession no. FJ938036) has been determined, and a gene (lagC) encoding the putative lactococcin G immunity protein has been identified downstream of the two genes encoding the two lactococcin G peptides. Downstream of the two genes encoding the two enterocin 1071 peptides, a gene (entI) encoding the enterocin 1071 immunity protein has been identified (4, 11). The putative lactococcin G immunity protein shows 38% amino acid sequence identity to the enterocin 1071 immunity protein (the sequence of which was obtained from Franz et al. [11]), and both proteins consist of 110 amino acid residues (Fig. (Fig.1A).1A). The aim of this study was to identify which peptides or which parts of the peptides of the two-peptide bacteriocins lactococcin G and enterocin 1071 are recognized by these immunity proteins. To achieve this, combinations of wild-type lactococcin G peptides, wild-type enterocin 1071 peptides, and hybrid lactococcin-enterocin peptides were assayed against sensitive strains that were transformed with an expression plasmid carrying either the lactococcin G or the enterocin 1071 immunity gene.  相似文献   

8.
Pig and horse colipases contain three tyrosine residues. In addition, horse colipase possesses a tryptophan residue. Some of the tyrosine residues are involved in the association of colipase and a bile salt micelle. The present report demonstrates that the aromatic residues responsible for colipase fluorescence are in an aqueous environment. In the presence of bile salt micelles, changes in colipase fluorescence properties indicate that the intrinsic fluorophores are located in a more hydrophobic environment upon colipase-micelle complex formation. In addition, the fluorescence of an NBD group fixed on lysine 60, which is very close to the aromatic region in the pig colipase, is also altered in the presence of micelles. These results show that the micelle binding site is not limited to the tyrosine residues but may be broadened to adjacent residues such as lysine 60 and also tryptophan 52 in horse colipase.  相似文献   

9.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

10.
Streptococcus mutans secretes and utilizes a 21-amino-acid signaling peptide pheromone to initiate quorum sensing for genetic competence, biofilm formation, stress responses, and bacteriocin production. In this study, we designed and synthesized a series of truncated peptides and peptides with amino acid substitutions to investigate their structure-activity relationships based on the three-dimensional structures of S. mutans wild-type signaling peptide UA159sp and C-terminally truncated peptide TPC3 from mutant JH1005 defective in genetic competence. By analyzing these peptides, we demonstrated that the signaling peptide of S. mutans has at least two functional domains. The C-terminal structural motif consisting of a sequence of polar hydrophobic charged residues is crucial for activation of the signal transduction pathway, while the core alpha-helical structure extending from residue 5 to the end of the peptide is required for receptor binding. Peptides in which three or more residues were deleted from the C terminus did not induce genetic competence but competitively inhibited quorum sensing activated by UA159sp. Disruption of the amphipathic alpha-helix by replacing the Phe-7, Phe-11, or Phe-15 residue with a hydrophilic residue resulted in a significant reduction in or complete loss of the activity of the peptide. In contrast to the C-terminally truncated peptides, these peptides with amino acid substitutions did not compete with UA159sp to activate quorum sensing, suggesting that disruption of the hydrophobic face of the alpha-helical structure results in a peptide that is not able to bind to the receptor. This study is the first study to recognize the importance of the signaling peptide C-terminal residues in streptococcal quorum sensing.  相似文献   

11.
Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.  相似文献   

12.
The manner of interaction of the coat peptide of the Pf3 phage (Pf3 peptide) with lipid bilayers has been extensively studied. Presently, we designed a derivative of the Pf3 peptide, referred to as the DDRK peptide, and subjected it to trypsin digestion to understand its physicochemical properties. In the presence of Triton X-100 used for solubilization of the peptide, digestion of DDRK with trypsin caused specific cleavage at the lysine (Lys) residue in its N-terminal region but not at other Lys residues or at the arginine residue. As the N-terminal region of the DDRK peptide is relatively hydrophilic, but its remaining region is hydrophobic, this hydrophobic region of the peptide would be expected to be coated by Triton micelles. Thus, we propose that the presence of such micelles protected against cleavage there, leading to selective cleavage by trypsin of the DDRK peptide at its hydrophilic Lys residue in the N-terminal part of the molecule. However, such a protective effect on the DDRK peptide against trypsin digestion was not observed with octylglucoside. The observed results are important for better understanding of the manner of interaction between detergents and hydrophobic peptides.  相似文献   

13.
A series of histidine-containing peptides (LAH4X6) was designed to investigate the membrane interactions of selected side chains. To this purpose, their pH-dependent transitions from in-plane to transmembrane orientations were investigated by attenuated total reflection Fourier transform infrared and oriented solid-state NMR spectroscopies. Peptides of the same family have previously been shown to exhibit antibiotic and DNA transfection activities. Solution NMR spectroscopy indicates that these peptides form amphipathic helical structures in membrane environments, and the technique was also used to characterize the pK values of all histidines in the presence of detergent micelles. Whereas one face of the amphipathic helix is clearly hydrophobic, the opposite side is flanked by four histidines surrounding six leucine, alanine, glycine, tryptophan, or tyrosine residues, respectively. This diversity in peptide composition causes pronounced shifts in the midpoint pH of the in-plane to transmembrane helical transition, which is completely abolished for the peptides carrying the most hydrophilic amino acid residues. These properties open up a conceptually new approach to study in a quantitative manner the hydrophobic as well as specific interactions of amino acids in membranes. Notably, the resulting scale for whole residue transitions from the bilayer interface to the hydrophobic membrane interior is obtained from extended helical sequences in lipid bilayers.  相似文献   

14.
Resonance Raman and electronic absorption spectra obtained at various pH values for the Fe3+ form of distal F54 mutants of Coprinus cinereus peroxidase are reported, together with the Fe2+ form and fluoride and imidazole adducts at pH 6.0, 5.0, and 10.5, respectively. The distal phenylalanine residue has been replaced by the small aliphatic residues glycine and valine and the hydrogen-bonding aromatic residues tyrosine and tryptophan (F54G, -V, -Y, and -W, respectively). These mutations resulted in transitions between ferric high-spin five-coordinate and six-coordinate forms, and caused a decrease of the pKa of the alkaline transition together with a higher tendency for unfolding. The mutations also alter the ability of the proteins to bind fluoride in such a way that those that are six-coordinate at pH 5.0 bind more strongly than both wild-type CIP and F54Y which are five-coordinate at this pH value. The data provide evidence that the architecture of the distal pocket of CIP is altered by the mutations. Direct evidence is provided that the distal phenylalanine plays an important role in controlling the conjugation between the vinyl double bonds and the porphyrin macrocycle, as indicated by the reorientation of the vinyl groups upon mutation of phenylalanine with the small aliphatic side chains of glycine and valine residues. Furthermore, it appears that the presence of the hydrogen-bonding tyrosine or tryptophan in the cavity increases the pKa of the distal histidine for protonation compared with that of wild-type CIP.  相似文献   

15.
Antimicrobial peptides belonging to the pediocin-like family of bacteriocins (class IIa bacteriocins) produced by lactic acid bacteria contain several tryptophan residues that are highly conserved. Since tryptophan residues in membrane proteins are often positioned in the membrane-water interface, we hypothesized that Trp residues in bacteriocins could be important determinants of the structure of membrane-bound peptides and of anti-microbial activity. To test this hypothesis, the effects of mutating each of the 3 tryptophan residues (Trp18, Trp33, and Trp41) in the 43-residue pediocin-like bacteriocin sakacin P were studied. Trp18 and Trp33 are located at each end of an amphihilic alpha-helix, whereas Trp41 is near the end of an unstructured C-terminal tail. Replacement of Trp33 with the hydrophobic residues Leu and Phe had marginal effects on activity, whereas replacement with the more polar Tyr and Arg reduced activity 10-20 and 500-1000 times, respectively, indicating that Trp33 and the C-terminal part of the helix interact with the hydrophobic core of the membrane. Any mutation of Trp18 and Trp41 reduced activity, indicating that these two residues play unique roles. Substitutions with other aromatic residues were the least deleterious, indicating that both Trp18 and Trp41 interact with the membrane-water interface. The suggested locations of the three Trp residues are compatible with a structural model in which the helix and the C-terminal tail form a hairpin-like structure, bringing Trp18 and Trp41 close to each other in the interface, and placing Trp33 in the hydrophobic core of the membrane. Indeed, the deleterious effect of the W18L and W41L mutations could be overcome by stabilizing the hairpin-like structure by introduction of a disulfide bridge between residues 24 and 44. These results provide a basis for a refined structural model of pediocin-like bacteriocins and highlight the unique role that tryptophan residues can play in membrane-interacting peptides.  相似文献   

16.
A series of eight amphipathic peptides (8, 11, 15, 2 x 18, 22, 26, 29 amino acids in length) were designed to investigate the effects of amino acid composition, peptide length and secondary structure on surface activity assessed as emulsification and foaming activity. The potential for alpha-helix formation at the hydrophobic/hydrophilic interface was maximized through the use of helix-forming amino acids, a relatively large hydrophobic surface of 200 degrees of arc and ion pairs between basic and acidic amino acids on the hydrophilic surface. Emulsification activity increased rapidly between 11 and 22 residues as alpha-helicity in aqueous solution increased. Despite their small size, the peptides produced exceptionally stable emulsions, compared with proteins. Foaming activity was enhanced by the presence of aromatic amino acids and the activity of the best peptide examined was superior to that of bovine serum albumin and beta-lactoglobulin.  相似文献   

17.
Activation loop tyrosine autophosphorylation is an essential requirement for full kinase activation of receptor tyrosine kinases (RTKs). However, mechanisms involved are not fully understood. In general, kinase domains of RTKs are folded into two main lobes, NH2- and COOH-terminal lobes. The COOH-terminal lobe of vascular endothelial growth factor receptor-2 (VEGFR-2) is folded into seven alpha-helices (alphaD-alphaI). In the studies presented here we demonstrate that leucine residues of helix I (alphaI) regulate tyrosine autophosphorylation and phosphotransferase activity of VEGFR-2. The presence of leucines 1158, 1161, and 1162 are essential for tyrosine autophosphorylation and kinase activation of VEGFR-2 and are involved in helix-helix packing via hydrophobic interactions. The presence of leucine 1158 is critical for kinase activation of VEGFR-2 and appears to interact with alphaE, alphaF, alphaH, and beta7. The analogous residue, leucine 957 on platelet-derived growth factor receptor-beta and leucine 910 on colony stimulating factor-1R are also found to be critical for tyrosine autophosphorylation of these receptors. Leucines 1161 and 1162 are also involved in helix-helix packing but they play a less critical role in VEGFR-2 activation. Thus, we conclude that leucine motif-mediated helix-helix interactions are critical for kinase regulation of type III RTKs. This mechanism is likely to be shared with other kinases and might provide a basis for the design of a novel class of tyrosine kinase inhibitors.  相似文献   

18.
In vivo recombination has been used to make a series of AroP-PheP chimeric proteins. Analysis of their respective substrate profiles and activities has identified a small region within span III of AroP which can confer on a predominantly PheP protein the ability to transport tryptophan. Site-directed mutagenesis of the AroP-PheP chimera, PheP, and AroP has established that a key residue involved in tryptophan transport is tyrosine at position 103 in AroP. Phenylalanine is the residue at the corresponding position in PheP. The use of PheP-specific antisera has shown that the inability of certain chimeras to transport any of the aromatic amino acids is not a result of instability or a failure to be inserted into the membrane. Site-directed mutagenesis has identified two significant AroP-specific residues, alanine 107 and valine 114, which are the direct cause of loss of transport activity in chimeras such as A152P. These residues replace a glycine and an alanine in PheP and flank a highly conserved glutamate at position 110. Some suggestions are made as to the possible functions of these residues in the tertiary structure of the proteins.  相似文献   

19.

Background

Ras-like GTPases function as on-off switches in intracellular signalling pathways and include the Rab, Rho/Rac, Ran, Ras, Arf, Sar and Gα families. How these families have evolutionarily diverged from each other at the sequence level provides clues to underlying mechanisms associated with their functional specialization.

Results

Bayesian analysis of divergent patterns within a multiple alignment of Ras-like GTPase sequences identifies a structural component, termed here the glycine brace, as the feature that most distinguishes Rab, Rho/Rac, Ran and (to some degree) Ras family GTPases from other Ras-like GTPases. The glycine brace consists of four residues: An aromatic residue that forms a stabilizing CH-π interaction with a conserved glycine at the start of the guanine-binding loop; a second aromatic residue, which is nearly always a tryptophan, that likewise forms stabilizing CH-π and NH-π interactions with a glycine at the start of the phosphate-binding P-loop; and two other residues (typically an aspartate and a serine or threonine) that, together with a conserved buried water molecule, form a network of interactions connecting the two aromatic residues.

Conclusion

It is proposed that the two glycine residues function as hinges and that the glycine brace influences guanine nucleotide binding and release by interacting with these hinges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号