首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Neuronal hypertrophy and increased metabolism in nerve cells are evaluated as possible factors initiating hyperplasia of perineuronal cells. Colchicine induced neuropathy in the dorsal root ganglia is used as the model of increased neuronal metabolism.Twenty-eight female white rats weighing 100 g were divided into four groups, each animal receiving a 50 l injection into the subarachnoid space at the lumbosacral level eight days and again three days before sacrifice. The 50 l contained 25, 2.5 and 0.25 g of colchicine in distilled water for the first three groups and normal saline for the last group.A Zeiss ocular with random test points was used to determine the volume of tissue occupied by perineuronal cells and nerve cells in spinal ganglia. Direct cell counts yielded the size of the population of perineuronal cells and neurons.Irreversible motor and sensory loss occurred with the high dose injection, reversible loss with the 2.5 g injection and no loss with either the low dose or the saline injection. Chromatolytic neurons were noted in all animals receiving colchicine. Neither proliferation of perineuronal cells nor neuronal hypertrophy were observed. Neuronal hypertrophy, rather than altered neuronal metabolism, may be the initiating event in the perineuronal cell hyperplasia that frequently accompanies chromatolysis.  相似文献   

2.
Summary The immunoreactive CRF-neurons of the rat hypothalamus have been examined immunohistochemically employing anti-rat CRF serum. These neurons are confined to the paraventricular nucleus, dorsomedial-lateral hypothalamic area, and suprachiasmatic nucleus, and are, respectively, also immunoreactive to anti-Met-enk, -alpha-MSH, and -VIP sera. Intraventricular administration of colchicine (50 g/5 l/rat) induces a dramatic enhancement of the immunostainability of the cell somata, and also accelerates the development of immunoreactivity of other stored peptides, especially in the paraventricular nucleus.The CRF-neurons respond to adrenalectomy by showing increased immunoreactivity and an increase in the number of cell bodies; in the dorsomedial-lateral area and suprachiasmatic nucleus, there is also an enhanced immunoreactivity for alpha-MSH and VIP, respectively. CRF-cells in the paraventricular nucleus become markedly hypertrophied, but do not show any enhanced immunoreactivity for Met-enk. Since the axons of the paraventricular neurons run to the median eminence, it is probable that they are involved with the endocrine control of hypophysial ACTH release. It is concluded that the CRF-containing neurons in rat hypothalamus consist of three types which are functionally and morphologically different.  相似文献   

3.
Summary Isolated and homogenised Deiters' neurons from the lateral vestibular nucleus of rabbit in a Krebs-Ringer solution containing no added Mg++, 1.3 moles/ ml and 5 moles/ml Mg++, broke down ATP at the maximal rate of 0.29+-0.20, 2.40+–0.20, and 5.95+–0.63 moles/cell/hr. In 1.3 mM Mg++ solution the single cell homogenates took up phosphate at the mean rate of 2.6+–0.2 moles/cell/hr. If the rabbits were injected 1 hour before with 20 mg/kg body weight of 2-amino-1-propene-1,1,3, tricarbonitrile (triap), the breakdown of ATP in these latter media was 0.82+–0.44, 2,5+–0.60, and 6.7+– 1.1 moles/cell/hr, respectively, and the quantity of inorganic liberated did not decrease.  相似文献   

4.
The aim of the present study was to verify the hypothesis that stress exposure modifies the content and release of galanin in the hypothalamic paraventricular nucleus and the median eminence. Colchicine and immobilization served as stress stimuli, and the changes in galanin immunoreactivity were compared with those in corticotropin-releasing hormone and vasopressin. In control animals, a limited number of galanin perikarya were identified in the paraventricular nucleus. The high dose (75 g) of colchicine enhanced galanin in both parvicellular and magnocellular subdivisions, as analysed 72 h later. In the median eminence, galanin accumulated only in the external zone. High- dose colchicine did not affect galanin, while corticotropin- releasing hormone and vasopressin were depleted from the median eminence. Immobilization (120 min) neither alone nor in combination with colchicine influenced galanin immuno-reactivity in the external zone. The low dose of colchicine induced an unexpected accumulation of galanin in the internal zone of the median eminence, which was further increased by subsequent immobilization. In the external zone, low-dose colchicine induced a complete disappearance of vasopressin, substantial depletion of corticotropin-releasing hormone and no changes in galanin immunoreactivity. The present studies demonstrate that galanin in the external zone of the median eminence is not influenced by colchicine or by immobilization stress.  相似文献   

5.
Summary The immunohistochemical localization of neuropeptide Y (NPY) was correlated with those of dopamine--hydroxylase (DBH) and vasoactive intestinal polypeptide (VIP) by mapping serial 7 m paraffin sections at three levels of the guina pig lower brainstem: a) area postrema, b) dorsal motor nucleus of the vagus, and c) nucleus prepositus of the hypoglossal nerve. Based on differences in transmitter expression, three populations of NPY-immunoreactive (IR) neurons were distinguished: NPY-IR catecholaminergic cells (NPY/CA), NPY-IR VIP-ergic cells (NPY/VIP), and NPY-IR cells which were not reactive to either DBH or VIP. Within these populations, size differences among neurons in characteristic locations allowed differentiation among the following subpopulations: NPY/CA neurons in the lateral reticular nucleus — magnocellular part (mean neuronal size 538 m2) and parvocellular part (318 m2)-, in the vagus-solitarius complex (433 m2), and in the dorsal strip (348 m2); NPY/VIP neurons in the vagus-solitarius complex (368 m2) and in the nucleus ovalis (236 m2). Apart from scattered NPY-IR cell bodies in the regions listed above, NPY-IR cell bodies in the lateral portion of the nucleus solitarius and in the caudal part of the spinal nucleus of the trigeminal nerve did not exhibit IR to either DBH or VIP. NPY-IR neurons in the area postrema occurred too infrequently for co-localization studies. The differential distribution of heterogeneous NPY-IR cell subpopulations may reflect the involvement of NPY in a variety of neuronal functions.Supported by the Deutsche Forschungsgemeinschaft, grant He 919/6-1  相似文献   

6.
Summary Recently, the existence of a vasopressin-immunoreactive cell group was described in the bed nucleus of the stria terminalis (van Leeuwen and Caffé 1983). In the present investigation additional nuclei containing vasopressin-immunoreactive cells were found, after colchicine pretreatment, in the dorsomedial hypothalamus, medial amygdaloid nucleus and the locus coeruleus.Vasopressin-immunoreactive cells in the dorsomedial hypothalamus and medial amygdaloid nucleus are small (8–14 m and 10–14 m, respectively), while those in the locus coeruleus are medium-sized (20–25 m). Incubation with anti-bovine neurophysin II and anti-rat neurophysin revealed staining of the same cell group in the above-mentioned areas. None of these cell groups show stained cells after incubation with anti-oxytocin and anti-bovine neurophysin I. When sections of the homozygous Brattleboro rat, which shows a deficiency in vasopressin synthesis, are incubated with anti-vasopressin, anti-bovine neurophysin II, or anti-rat neurophysin, no immunoreactivity can be observed in these brain regions.The above-mentioned cell groups may contribute to the vasopressinergic innervation of brain sites that have been reported to persist after lesioning of the suprachiasmatic, paraventricular and bed nuclei of the stria terminalis.  相似文献   

7.
Summary The morphological interrelationship between the central serotonergic and hypothalamic corticotropin-releasing factor (CRF) synthesizing systems was studied in the hypothalamic paraventricular nucleus (PVN) of colchicine pretreated male rats. The simultaneous immunocytochemical localization of the transmitter and peptide employed the peroxidase-antiperoxidase complex (PAP) technique using the silver-gold intensified (SGI) and non-intensified forms of the oxidized 3,3-diaminobenzidine (DAB) chromogen.The paraventricular nucleus received a moderate serotonergic innervation as compared with other diencephalic structures. The distribution and arborization of serotonergic axons were more prominent in the parvocellular subnuclei than in the magnocellular units of the nucleus. Serotonin containing axons formed terminal bouton and en passant type synapses with dendrites and somata of parvocellular neurons. The immunocytochemical double labelling technique revealed the overlapping of serotonergic axons and CRF-immunoreactive neurons. Vibratome (40 m) and semithin (1 m) sections indicated that the interneuronal communication may take place on both dendrites and cell bodies of CRF-immunoreactive neurons. Ultrastructural analysis demonstrated that serotonin-containing terminals formed axo-dendritic and axo-somatic synapses with CRF-immunoreactive neurons. These findings indicate that the central serotonergic neuronal system can influence the function of the pituitary-adrenal endocrine axis via a direct action upon the hypophysiotrophic CRF synthesizing neurons.Supported by NIH Grant NS19266  相似文献   

8.
Summary The polarity of a growing pollen tube is clearly reflected by a distinct zonation of the cytoplasmic content. The vegetative nucleus and the generative cell (GC) are located in the tip region of the tube, and the basal cytoplasmic portion is highly vacuolated. Using pollen tubes ofNicotiana sylvestris Spegazz. & Comes grown in vitro, we examined the effects of varying concentrations of the microtubule inhibitors colchicine and propham. The depolymerization of the cortical microtubules by 25 M colchicine led to a disorganization of the cytoplasm, i.e., vacuolization of the tip region, and to a deranged position of both the vegetative nucleus and the generative cell. The same concentration of colchicine inhibited tube growth by 10–20% of the control. Mitosis of the GC was not affected. Only from concentrations of 200 M the configuration of the GC's microtubules was altered and an inhibition of mitosis was observed. At this concentration the disorganization of the cytoplasm was always reversible, but neither inhibition of mitosis nor derangement of the nuclear positioning was. At 1,800 M colchicine, pollen tube growth was inhibited by 50% of the control. Using propham, the same three steps of action were observed, although propham proved to be about a hundred times more effective than colchicine. We conclude that the cortical microtubules of the pollen tube are involved in maintaining cellular polarity, probably as a part of a heterogeneous cytoskeletal network including also microfilaments and membranous elements. Nuclear positioning seems to be dependent on both, the tube's cortical and the GC's microtubules. A possible involvement of the extracellular matrix in maintaining intracytoplasmic polarity is suggested.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EGTA ethyleneglycol-bis-(aminoethyl ether) tetraacetic acid - GC generative cell - MF microfilament - MT microtubule - PEM-buffer 50 mM PIPES, 1 mM EGTA, 2 mM MgSO4, pH 6.9 - PBS phosphate buffered saline - PIPES piperazine-bis-ethanesulphonic acid - PTG-test pollen tube growth test - VN vegetative nucleus Dedicated to Professor Peter Sitte on the occasion of his 65th birthday  相似文献   

9.
Using a biotin-streptavidin-horseradish peroxidase (HRP) immunohistochemical technique the distribution of substance P-immunoreactive neuronal elements was investigated in the rat suprachiasmatic nucleus (SCN). Substance P-immunoreactive nerve fibres and varicosities were distributed throughout the suprachiasmatic nucleus, with the largest accumulation in its ventral part. Because this location overlaps with the innervation of retinal afferents, the distribution and density of substance P-immunoreactive fibres in bilaterally enucleated rats were compared to normal rats. The density of substance P-immunoreactive fibres and nerve terminals in the ventral part of the suprachiasmatic nuclei was reduced in the rats with bilateral destruction of the optic nerves, whereas the density of fibres and nerve terminals in the dorsal part as well as other retinal target areas in the thalamus and mesencephalon was unaffected. In rats pretreated with an intraventricular injection of colchicine several substance P-immunoreactive perikarya were identified in the suprachiasmatic nucleus. The immunoreactive neurons, measuring 9.7 m±1.1 m in diameter, were frequently observed in the central core of the nucleus and to a lesser extent in the dorsomedial and ventrolateral subparts. Using in situ hybridization histochemistry pre-protachykinin-A mRNA was found in the same part of the SCN indicating that synthesis of substance P takes place in SCN neurons. Using a double immunohistochemical approach applying diaminobenzidine and benzidinedihydrochloride as chromagens substance P-, vasoactive intestinal peptide (VIP)-, and vasopressin/neurophysin-immunoreactivities were identified in the same brain section. The substance P-immunoreactive perikarya constituted a separate population of SCN neurons, which were not vasopressin-, neurophysin- or VIP-immunoreactive. Taken together, these observations show that substance P is contained in the retinohypothalamic pathway and within a group of SCN cell bodies, indiating that substance P may play a role in the generation and entrainment of circadian rhythmicity.  相似文献   

10.
Summary Small doses (3.5 g and 7 g) of colchicine injected intracisternally caused an interruption of transport of secretory material from the supraoptic and paraventricular nuclei of the hypothalamus to the neural lobe of the pituitary gland. Transport was assessed by direct measurement of the incorporation of [35S] cysteine into neurophysins, by radioimmunoassay of accumulated material in discrete areas of the system and by immunocytochemistry. The larger dose (7 g) switched off transport completely during the first 24 h but the system began to recover within three to four days. Colchicine had little, if any, effect on synthesis; comparison of the relationships of the apparent amounts of immunoreactive neurophysins and immunoreactive hormones in the arrested product led to the conclusion that processing of the hormone precursors continues within the secretory granules which accumulated in the perikarya.Supported by the Medical Research Council and the Science Research Council. E.M.R. was in receipt of an exchange fellowship under the auspices of CONICYT of Chile and The Royal Society. The authors are grateful for the careful technical assistance of Mr. Peter Rees  相似文献   

11.
SUMMARY 1. The role of 1-adrenergic receptors on CRH mRNA levels in the PVN was studied in control and stressed rats receiving i.c.v. injections of the 1-adrenergic agonist, methoxamine, or the 1- antagonist, prazosin.2. Plasma ACTH increased significantly 60 min and 4 hr after a single injection of methoxamine (100 g, i.c.v.). No desensitization of this response was observed after repeated injections every 6 hr for 24 hr. Concomitantly, POMC mRNA in the anterior pituitary increased by 25% at 4 hr after a single injection and by 96% after repeated injections.3. CRH mRNA levels in the PVN increased by 131% after repeated injections for 24 hr, but were unchanged 4 hr after a single injection. Central 1-adrenergic blockade with prazosin did not prevent the increases in CRH mRNA following 4 hr of acute stress, but significantly reduced the increases observed 24 hr after an i.c.v. injection of 75 g of colchicine or after repeated i.p. hypertonic saline injections every 8 hr.4. These studies demonstrate that while 1-adrenergic receptors contribute to long-term increases of CRH mRNA levels in the PVN during prolonged stress, other factors are likely to be involved in the stimulation of CRH mRNA following acute stimulation.  相似文献   

12.
Changes in levels of biogenic amines and metabolites were measured using high performance liquid chromatography fitted with an electrochemical detection in various rat brain regions after acute administration of and abrupt withdrawal from continuous intracerebroventricular infusion of butorphanol (a // mixed opioid receptor agonist) or morphine (a -opioid receptor agonist). A single dose of butorphanol (26 nmol/5 l) or morphine (26 nmol/5 l) increased levels of 3,4-dihydroxyphenylacetic acid in the striatum and limbic region and of homovanilic acid in the cortex, striatum, and limbic region. In animals which had been infused with butorphanol (26 nmol/l/hr) or morphine (26 nmol/l/hr) for 3 days, an increase in dopamine turnover was observed. The levels of 3,4-dihydroxyphenylacetic acid was decreased and that of homovanilic acid was increased in the striatum, limbic region, and midbrain immediately after termination of opioid infusion. Both dopamine metabolites (in these areas) were decreased at 2 and 6 hr after butorphanol or morphine withdrawal. Changes in norepinephrine, serotonin, and 5-hydroxyindoleacetic acid levels in some brain regions were observed in the morphine-, but not in butorphanol-dependent rats. These data suggest that the increase and the decrease in dopaminergic activity, but not noradrenergic and serotonergic neurons, in the some brain regions are closely associated with the production of antinociception of and the expression of withdrawal syndrome from butorphanol and morphine, respectively.  相似文献   

13.
Ornithine decarboxylase activity was increased about tenfold in adrenal glands and in brain regions preponderantly containing aminergic neurons, by a single dose of 16 mol/kg of reserpine. Maximal enzyme activity in the adrenal glands was observed at about 8 hr after reserpine administration. The ornithine decarboxylase activity-time curves in the brain regions showed a concomitant polyphasic course, with the highest maximum at 12 hr postinjection. Ornithine decarboxylase induction is discussed as an early event in the cascade of molecular events preceding the induction of cell typic enzymes.  相似文献   

14.
Ricin, a protein from the seeds ofRicinus communis which inhibits protein synthesis by eukaryotic ribosomes, is highly toxic when injected intraventricularly to rats, the LD50 being 0.241 g/rat at 72 hr and 0.084 g/rat at 7 days. Poisoned animals showed signs of central depression; they did not die before 20 hr of intoxication. Incorporation of amino acids in vivo into brain total protein and into brain ribosomes was impaired, as was protein synthesis in vitro by microsomes isolated from the brain of poisoned rats.  相似文献   

15.
At metaphase I during spermatogenesis in Mesostoma ehrenbergii ehrenbergii (2 × = 10), 3 bivalents and 4 univalents form. The bivalents each have a single distally localised chiasma. Electron microscope serial section reconstructions have shown that 3 short pieces of synaptonemal complex (SC) are present in pachytene nuclei in the testis. All the SC is contained in a lobe which is separated by an invagination from the main body of the nucleus. The SC pieces vary in length from approximately 2 m to 5 m, and the greatest amount found in one nucleus was approximately 13 m. It is proposed that the pieces of SC correspond to the paired regions of the 3 bivalents present at metaphase I. This system is therefore an example of localised pairing leading to localised chiasmata. Later prophase stage nuclei have also been reconstructed, in which stacks of polycomplex are present but no SC has been found. The polycomplex is thought to be an association of discarded SC sub-units.  相似文献   

16.
Previous immunocytochemical studies have shown the presence of motilin-immunoreactive neurons in specific brain areas of rats and autoradiographic studies in rabbits demonstrated motilin-binding sites in the central nervous system as well. Therefore, the aim of this study was to determine the anatomical localisation and neurochemical features of neurons activated by central administration of motilin (Mo) in rats. One week after cannulation, an intracerebroventricular injection of Mo (ICV, 3 g/6 l 0.9% saline) was given. For comparative purposes, a group of animals received an intravenous injection of motilin (IV, 9 g/300 l 0.9% saline) or an equal volume of saline. Neuronal excitation was assessed by c-Fos immunocytochemistry and combined with immunostaining for neurotransmitter markers. In contrast to the IV motilin-treated animals, the ICV motilin-treated animals displayed a significant increase in c-Fos expression in the supraoptic nuclei (SO) and paraventricular nuclei of the hypothalamus (PVH). At the level of the dorsomedial, ventromedial and lateral hypothalamic nuclei, ICV administration of motilin did not induce changes in c-Fos expression. In addition, the cerebellum did not show c-Fos expression after ICV motilin administration either. These findings might suggest distinct pathways and actions of centrally released and systemic motilin, but, particularly in rodents, do not rule out the possibility that the effects seen in the SO and PVH after ICV application are aspecific in nature. At present, we cannot exclude the fact that the results observed with motilin in rodents are due to cross-interaction with other related (e.g. ghrelin) or not yet identified receptors.  相似文献   

17.
Brain ischemia was produced in gerbils (Meriones unguiculatus) by the bilateral ligation of the carotid arteries. Definite changes in the energy status of brain demonstrated that carotid occlusion was effective. Five minutes before ligation, an intraventricular injection of either saline or cytidine diphosphate choline (CDP-choline, 0.6 mol/brain, 3l) was given to groups of animals. Control animals, with and without CDP-choline, together with the ischemic groups, were decapitated directly into liquid nitrogen; 10 min after arterial ligation. Brain free fatty acids, neutral lipids and phospholipids, which were labeled in vivo by the intraventricular injection of [1-14C] arachidonic acid (0.4–0.6 Ci, 6–9 nmol) 2 hr prior to ligation, were extracted, purified, and separated by thin-layer chromatographic procedures. The CDP-choline treatment noticeably corrected the increase of total and individual fatty acids due to ischemia and the increase of their radioactivity content. The changes in neutral lipids, particularly in the diacyl glycerol fraction, were also corrected by the injection of the nucleotide. CDP-choline partially reversed the decrease of brain phosphatidylcholine and of its labeling, which was due to ischemia. All the data indicate that the prior injection of CDP-choline stimulates the choline phosphotransferase reaction of brain towards synthesis of phosphatidylcholine and prevents the release of free fatty acids, particularly of arachidonic acid, associated with ischemia.  相似文献   

18.
Extracellular fluid levels of glutamate were measured in the locus coeruleus during butorphanol (a mixed agonist at -, -, and -opioid receptors) withdrawal by using microdialysis in conscious butorphanol-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infusions of butorphanol (26 nmol/l l/hr) or saline (1 l/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the locus coeruleus 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (48 nmol/5 l). A separate series of rats was rendered dependent by peripheral injection of butorphanol (20 mg/kg, s.c., b.i.d.) for 5 days and naloxone (5 mg/kg, i.p.) was given to precipitate withdrawal. Single injections of butorphanol (26 nmol/5 l, i.c.v.) had no effect on the extracellular fluid levels of glutamate, compared to rats injected with vehicle. Behavioral evidence of withdrawal was detected following naloxone challenge in butorphanol-dependent rats (both i.c.v. and s.c. models), but not in nondependent, vehicle-treated rats. Significant increases (P<0.05) in levels of glutamate were noted after naloxone-precipitated withdrawal only in the butorphanol group. The glutamate levels in the locus coeruleus increased from 8.37±2.01 before, to 21.93±4.58 M in the first 15 min sample following i.c.v. injections of 48 nmol/5 l naloxone and from 10.84±1.74 before, to 26.01±6.19 M in the 15–30 min sample following i.p. injections of 5 mg/kg naloxone in the butorphanol-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the locus coeruleus in butorphanol withdrawal.  相似文献   

19.
Summary The synchronizing effect of ethinylestradiol (4 g/g b.w.) on neurons of the arcuate nucleus 700–950 m caudal to the posterior edge of the optic chiasma was studied by karyometry in 6-week-old albino mice during proestrus.The caudal portion of the arcuate nucleus was identified as the most estrogen-sensitive subdivision; all neurons showed an increase in their nuclear area (mean transect, profile area of the nucleus) 1 h following administration of ethinylestradiol. This hypothalamic region was selected for the subsequent electron-microscopic cytometric study to analyze functional interrelationships among neurons, ependymal cells and glial cells. Six and 12 days after ovariectomy no significant change in the nuclear area of neurons and ependymal cells was found 850–950 m behind the posterior slope of the optic chiasma, but the neurons exhibited a decrease in the number of polyribosomes, the volume fraction (VVmi) and the surface density of the inner membrane of mitochondria (SVmi). A similar decrease in VVmi and SVmi was measured in the apical part of ependymal cells and in the pericapillary profiles of ependymal and glial cells, which was accompanied by a reduction in the surface density of ependymal processes extending into the ventricular lumen. In addition, no change of VVmi and SVmi was seen in the basal subnuclear part of ependymal cells.This bipolar functional reaction of ependymal cells after ovariectomy is discussed as an indicator of ependymal control of neuronal activity by sequestering biologically active agents, e.g., transmitters of neurohormones, in their apical and basal extensions facing the ventricular surface or the pericapillary space.  相似文献   

20.
Berberine and palmatine exhibit a mild and competitive inhibition on bovine adrenal tyrosine hydroxylase (EC 1.14.16.2; TH). In this study, the inhibitory effects of protoberberine alkaloids (such as berberine, palmatine and coptisine) on dopamine biosynthesis in PC12 cells were investigated. Treatment with berberine and palmatine showed 53.7% and 61.0% inhibition of dopamine content in PC12 cells at a concentration of 20 M for 24 hr, respectively. However, coptisine did not reduce dopamine content. The IC50 values of berberine and palmatine were 18.6 M and 7.9 M. Dopamine content was lowered at 6 hr and reached the minimal level at 24 hr after exposure to berberine and palmatine at 20 M. The decreased dopamine level was maintained up to 48 hr, and then recovered to the control level at about 72 hr. TH activity was inhibited at 6 hr following treatment with berberine and palmatine, and was maintained at a reduced level up to 36 hr in PC12 cells (21–27% inhibition at 20 M), whereas TH mRNA level was not found to alter for 24 hr. However, the intracellular Ca2+ concentration decreased by treatment with berberine and palmatine at 20 M by 22–26% inhibition relative to the control level in PC12 cells. These results give evidence that berberine and palmatine lead to decreased dopamine content by inhibition of TH activity but not by regulation of TH gene expression in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号