首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of protease inhibitors on invasion of rhesus erythrocytes by Plasmodium knowlesi merozoites was evaluated. Chymostatin, N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), and L-1-tosylamide-2-phenylethylchloromethyl ketone (TPCK) inhibited invasion. Leupeptin, antipain, pepstatin, and phenylmethylsulfonyl fluoride (PMSF) had no effect. TLCK and TPCK inhibited attachment of merozoites to host erythrocytes. Chymostatin had no adverse effect on attachment, and in its presence junction formation between the merozoite and host erythrocyte occurred. Both chymostatin and leupeptin inhibited normal rupture of schizont-infected erythrocytes. It is suggested that proteolytic activity may be important both in the rupture of schizont-infected erythrocytes and in the invasion of erythrocytes by malaria parasites.  相似文献   

2.
The role of proteases in the invasion of host cells by Eimeria tenella (Wisconsin strain) was studied in vitro. Protease inhibitors were used to treat sporozoites before inoculation or were applied to cultured chicken kidney cells before infection. The inhibitors antipain, leupeptin, aprotinin, L-1-tosylamide-2-phenyl-ethyl chloromethyl ketone (TPCK), or N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) reduced parasite invasion to 16-66% of control after treatment of cultured cells or sporozoites with 5- or 50-micrograms/ml concentrations of inhibitors in the culture medium. Phenylmethylsulfonyl fluoride (PMSF) reduced invasion to 32-57.7% at concentrations of 1-4 mM. The optimum pH for hydrolysis of azocasein by intact sporozoites or merozoites was determined over a range of pH 5.0 to pH 9.0. Sporozoites were highly active over a broad range from pH 5.5 to pH 9.0, with an apparent optimum at pH 8.0. Merozoites had a much lower specific activity with pH optima at 7.0 and 8.5. The protease activity of sporozoites or merozoites could be inhibited completely by the addition of 50 micrograms/ml of leupeptin, TPCK, or TLCK or of 4 mM PMSF. Antipain inhibited proteases of sporozoites but not of merozoites. Pepstatin had little effect on either sporozoites or merozoites. The results suggest that parasite proteases of Eimeria may be necessary for invasion of host cells.  相似文献   

3.
Highly synchronous cultures of the erythrocyte stages of Plasmodium falciparum were used to determine the effects of a number of protease inhibitors on parasite development and merozoite invasion. Leupeptin, N-tosyl-L-lysyl chloromethylketone and pepstatin at a concentration greater than 0.05 mM were deleterious to both parasite development and merozoite invasion whereas aprotinin, antipain, alpha-1-antitrypsin and soybean trypsin inhibitor had no effect at a concentration of 0.5 mM. On the other hand, N-tosyl-L-phenylalanyl chloromethylketone and phenylmethylsulfonylfluoride at a concentration of 1 mM and chymostatin at a concentration of 0.15 mM inhibited merozoite invasion but were not deleterious to parasite development. Pretreatment of red cells with these three inhibitors did not block merozoite invasion. These results suggested that a chymotrypsin-like activity of the merozoite is important in the invasion process.  相似文献   

4.
The secretory organelles of Plasmodium knowlesi were studied ultrastructurally to examine their mode of action during invasion. The formation of lamellar structures in merozoite rhoptries within late stage schizonts is prevented by the protease inhibitors chymostatin and leupeptin. Under normal conditions vesicles lined by 6-nm membranes are formed in rhoptries during erythrocyte invasion. Stereoscopic viewing of tilted sections shows that where the merozoite apex contacts the parasitophorous vacuole (PV) membrane during invasion, a domed elevation of the PV surface lies within the mouth of the rhoptry duct in contact with the secretory matrix. The membrane of the early invasion pit is thinner (6 nm) than the red cell membrane elsewhere, and sheets of lamellar material are frequently present on the invasion pit surface. These findings support the proposal that the rhoptry-microneme complex is capable of generating membranous material and inserting it into the red cell surface in a controlled manner to create the parasitophorous vacuole. On the basis of this model, measurements from serial sections show that the rhoptries could provide enough material to create a membrane lining the parasitophorous vacuole, and, with the contribution of the microspheres, could double it to accommodate the early ring stage of the parasite.  相似文献   

5.
The secretory organelles of Plasmodium knowlesi were studied ultrastructurally to examine their mode of action during invasion. The formation of lamellar structures in merozoite rhoptries within late stage schizonts is prevented by the protease inhibitors chymostatin and leupeptin. Under normal conditions vesicles lined by 6-nm membranes are formed in rhoptries during erythrocyte invasion. Stereoscopic viewing of tilted sections shows that where the merozoite apex contacts the parasitophorous vacuole (PV) membrane during invasion, a domed elevation of the PV surface lies within the mouth of the rhoptry duct in contact with the secretory matrix. The membrane of the early invasion pit is thinner (6 nm) than the red cell membrane elsewhere, and sheets of lamellar material are frequently present on the invasion pit surface. These findings support the proposal that the rhoptry-microneme complex is capable of generating membranous material and inserting it into the red cell surface in a controlled manner to create the parasitophorous vacuole. On the basis of this model, measurements from serial sections show that the rhoptries could provide enough material to create a membrane lining the parasitophorous vacuole, and, with the contribution of the microspheres, could double it to accommodate the early ring stage of the parasite.  相似文献   

6.
Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used to select mutant parasites with altered PSAC activities, suggesting acquired resistance via reduced channel-mediated toxin uptake. Surprisingly, although these toxins have similar structures and charge, we now show that reduced permeability of one does not protect the intracellular parasite from the other. Leupeptin accumulation in the blasticidin S-resistant mutant was relatively preserved, consistent with retained in vitro susceptibility to leupeptin. Subsequent in vitro selection with both toxins generated a double mutant parasite having additional changes in PSAC, implicating an antimalarial resistance mechanism for water-soluble drugs requiring channel-mediated uptake at the erythrocyte membrane. Characterization of these mutants revealed a single conserved channel on each mutant, albeit with distinct gating properties. These findings are consistent with a shared channel that mediates uptake of ions, nutrients and toxins. This channel's gating and selectivity properties can be modified in response to in vitro selective pressure.  相似文献   

7.
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.  相似文献   

8.
Invasion of erythrocytes by malaria parasites is known to be blocked by proteolytic digestion of merozoite receptors allegedly present in red cell membranes. This information was used in the present work to develop a simple and convenient assay for parasite invasion into red blood cells and for evaluating the role played by red cell membrane components in this process. Synchronized in vitro cultures of Plasmodium falciparum containing only ring stages were subjected to either trypsin or pronase digestion, a treatment that neither affected ring development into schizonts nor mature merozoite release. Cells from this culture were not invaded by the released merozoites. However, upon addition of untreated human red blood cells, marked invasion was observed, either microscopically or as [3H]isoleucine incorporation. The new assay circumvents the need for separating schizonts from uninfected cells and provides a convenient means for assessing how chemical and biochemical manipulation of red blood cells affects their invasiveness by parasites. Using this assay, we verified that sheep and rabbit erythrocytes were resistant to invasion, as were human erythrocytes which had been treated with trypsin, pronase or neuraminidase. Chymotrypsin digestion of human erythrocytes was without effect on invasion. Human erythrocytes which were chemically modified with the impermeant amino reactive reagent H2DIDS, or with the crosslinker of spectrin, TCEA, were found to resist invasion. The results underscore the involvement of surface membrane components as well as of elements of the cytoskeleton in the process of parasite invasion into erythrocytes.  相似文献   

9.
The malaria parasite sporozoite sequentially invades mosquito salivary glands and mammalian hepatocytes; and is the Plasmodium lifecycle infective form mediating parasite transmission by the mosquito vector. The identification of several sporozoite-specific secretory proteins involved in invasion has revealed that sporozoite motility and specific recognition of target cells are crucial for transmission. It has also been demonstrated that some components of the invasion machinery are conserved between erythrocytic asexual and transmission stage parasites. The application of a sporozoite stage-specific gene knockdown system in the rodent malaria parasite, Plasmodium berghei, enables us to investigate the roles of such proteins previously intractable to study due to their essentiality for asexual intraerythrocytic stage development, the stage at which transgenic parasites are derived. Here, we focused on the rhoptry neck protein 11 (RON11) that contains multiple transmembrane domains and putative calcium-binding EF-hand domains. PbRON11 is localised to rhoptry organelles in both merozoites and sporozoites. To repress PbRON11 expression exclusively in sporozoites, we produced transgenic parasites using a promoter-swapping strategy. PbRON11-repressed sporozoites showed significant reduction in attachment and motility in vitro, and consequently failed to efficiently invade salivary glands. PbRON11 was also determined to be essential for sporozoite infection of the liver, the first step during transmission to the vertebrate host. RON11 is demonstrated to be crucial for sporozoite invasion of both target host cells – mosquito salivary glands and mammalian hepatocytes – via involvement in sporozoite motility.  相似文献   

10.
In order to navigate its complex lifecycle, the malaria parasites must interactwith a range of host cells. Examples of this are the invasion of hepatocytes by sporozoites and erythrocyte invasion by merozoites. This requirement for cell recognition brings with it the need to display cognate ligands on the parasite surface, and therefore the capacity of the host to develop defences against the infection. Even at a stage where the intracellular nature of erythrocyte development would appear to offer an opportunity for the parasite to be immunologically "silent", parasite-derived proteins are found on the surface of the infected erythrocyte. This review will discuss the proteins found on or associated with the surface of the infected erythrocyte and the resulting phenotypes.  相似文献   

11.
The protein kinase C (PKC) family of isoenzymes mediate a wide range of signal transduction pathways in many different cells lines. Little is known regarding the presence and functional roles of PKC in Leishmania spp. Here we report the inhibition of parasite PKC by new imidazolidinone compounds. The most active derivative 7 showed an important activity (IC50 = 9.9 microM) against the clinical relevant stage of parasites in comparison with Glucantime (IC50 = 464.5 microM), without inducing toxicity on human fibroblast cells (IC50 = 102 microM). Pretreatment of intact parasites with 10 microM of compound 7 inhibited 80% of PKC activity. At the same concentration, this compound inhibited 70% of the parasite-host cell invasion process. An in vivo model showed that compound 7 reduced the liver parasite burden by 25% and spleen parasite burden by 44%. These results provide the first evidence that PKC plays a critical role in the invasion process. Thus Leishmania PKC activity could be a relevant therapeutic target and the imidazolidinones novel antileishmanial candidates.  相似文献   

12.
We have isolated and characterized a novel, large, multicatalytic protease from mammalian cells. This protease was designated PABI (protease accumulated by inhibitors). When baby hamster kidney (BHK) cells were grown in medium containing leupeptin, a potent serine-cysteine protease inhibitor, the trypsin-like protease activity (PABI) in the cells increased its level more than 100-fold over the control. This increase was also observed in other cultured cells such as COS, HepG2, and skin fibroblast cells. The activity was also elevated by treatment with other protease inhibitors including chymostatin or trans-epoxysuccinyl-L-leucylamide-(4-guanidino)butane. Immunoblot analysis, by employing antisera prepared against the purified PABI, also showed a concomitant increase of this protein in BHK, COS, and HepG2 cells on leupeptin treatment. PABI was purified to a homogeneous state from leupeptin-treated BHK cells. PABI is a glycoprotein of molecular weight 700,000. PABI was found to be a multimer of a major subunit of apparent Mr of 84,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electron microscopic analysis. PABI dissociates into subunits only under reducing conditions in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PABI has both trypsin-like and chymotrypsin-like protease activities toward synthetic substrates. Both activities were inhibited by phenylmethanesulfonyl fluoride, aprotinin, bovine pancreas trypsin inhibitor, and chymostatin. Leupeptin inhibited only the trypsin-like activity of PABI. p-Chloromercuribenzoate had no effect on either activity. Furthermore, PABI degraded collagen type I and fibronectin. These results indicate that PABI is a novel protease which differs from any known proteases including cytosolic high molecular weight proteases. The physiological function of PABI is yet to be determined.  相似文献   

13.
A Plasmodium falciparum malaria blood stage antigen was detected using a human monoclonal antibody (MAb A52A6) obtained from a clinically immune donor. Immunofluorescence analysis showed that the MAb reacted with the intracellular parasite throughout the asexual blood stage cycle as well as with gametocytes. The MAb also reacted with the surface of erythrocytes containing late stage P. falciparum parasites. The antigen seen by the MAb was species- but not strain- or isolate-specific. At rupture of the infected erythrocytes, antigenic material was deposited on the membrane of uninfected cells surrounding the parasite. At merozoite invasion MAb reactive material was present on the invaginating erythrocyte membrane, indicating an involvement of the antigen in the invasion process. This was also indicated by the high capacity of the MAb to inhibit merozoite invasion in vitro. The antigen appears to be a phosphoglycolipid, sensitive to phospholipase and present in lipid extracts of P. falciparum-infected erythrocytes.  相似文献   

14.
Invasion of erythrocytes by malaria parasites is known to be blocked by proteolytic digestion of merozoite receptors allegedly present in red cell membranes. This information was used in the present work to develop a simple and convenient assay for parasite invasion into red blood cells and for evaluating the role played by red cell membrane components in this process. Synchronized in vitro cultures of Plasmodium falciparum containing only ring stages were subjected to either trypsin or pronase digestion, a treatment that neither affected ring development into schizonts nor mature merozoite release. Cells from this culture were not invaded by the released merozoites. However, upon addition of untreated human red blood cells, marked invasion was observed, either microscopically or as [3H]isoleucine incorporation. The new assay circumvents the need for separating schizonts from uninfected cells and provides a convenient means for assessing how chemical and biochemical manipulation of red blood cells affects their invasiveness by parasites. Using this assay, we verified that sheep and rabbit erythrocytes were resistant to invasion, as were human erythrocytes which had been treated with trypsin, pronase or neuraminidase. Chymotrypsin digestion of human erythrocytes was without effect on invasion. Human erythrocytes which were chemically modified with the impermeant amino reactive reagent H2DIDS, or with the crosslinker of spectrin, TCEA, were found to resist invasion. The results underscore the involvement of surface membrane components as well as of elements of the cytoskeleton in the process of parasite invasion into erythrocytes.  相似文献   

15.
The protein kinase C (PKC) family of isoenzymes mediate a wide range of signal transduction pathways in many different cells lines. Little is known regarding the presence and functional roles of PKC in Leishmania spp. Here we report the inhibition of parasite PKC by new imidazolidinone compounds. The most active derivative 7 showed an important activity (IC 50 =9.9 μM) against the clinical relevant stage of parasites in comparison with Glucantime ® (IC 50 =464.5 μM), without inducing toxicity on human fibroblast cells (IC 50 =102 μM). Pretreatment of intact parasites with 10 μM of compound 7 inhibited 80% of PKC activity. At the same concentration, this compound inhibited 70% of the parasite-host cell invasion process. An in vivo model showed that compound 7 reduced the liver parasite burden by 25% and spleen parasite burden by 44%. These results provide the first evidence that PKC plays a critical role in the invasion process. Thus Leishmania PKC activity could be a relevant therapeutic target and the imidazolidinones novel antileishmanial candidates.  相似文献   

16.
Malaria is caused by Plasmodium parasites, which belong to the phylum apicomplexa. The characteristic feature of apicomplexan parasites is the presence of apical organelles, referred to as micronemes and rhoptries, in the invasive stages of the parasite life cycle. Survival of these obligate intracellular parasites depends on successful invasion of host cells, which is mediated by specific molecular interactions between host receptors and parasite ligands that are commonly stored in these apical organelles. The timely release of these ligands from apical organelles to the parasite surface is crucial for receptor engagement and invasion. This article is a broad overview of the signalling mechanisms that control the regulated secretion of apical organelles during host cell invasion by apicomplexan parasites.  相似文献   

17.
17 different proteinase inhibitors were screened for their effect on the erythrocyte invasion by the malaria parasite Plasmodium flaciparum. The effect was tested when the inhibitors were present in the culture medium and when they were trapped into erythrocyte ghosts. A very strong inhibition of invasion was observed in the presence of calpain inhibitors, with IC50 in the order of 10?7 M. Chymostatin, leupeptin, leupeptin, pepstatin A and bestatin also caused inhibition of the invasion, but with IC50 in the order of 10?5 M. The results suggest that participation of various proteinases in the process and point to the possibility of a calpain-mediated proteolytic event. This study may explain previous observations on the role of calcium in the invasion of the human erythrocyte by Plasmodium flaciparum.  相似文献   

18.
Effects of 15 proteinase inhibitors and an inhibitor against aminopeptidases on fertilization of the solitary ascidian, Halocynthia roretzi were studied in search of lysins. Fertilization of intact eggs was blocked by three trypsin inhibitors, leupeptin, antipain, and soybean trypsin inhibitor, and by two chymotrypsin inhibitors, chymostatin and potato proteinase inhibitor I. On the other hand, the fertilization of naked eggs was not blocked at all by leupeptin and was only partially blocked by chymostatin at the concentrations sufficient for blocking that of intact eggs. This indicates that spermatozoa utilize trypsin-like and chymotrypsin-like proteinases probably as lysins for penetrating through the chorion. The chymotrypsin-like activity appears to be also required for some step besides sperm penetration through the egg investments.  相似文献   

19.
《Journal of molecular biology》2019,431(21):4259-4280
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.  相似文献   

20.
When chicks are injected with the immunosuppressant cyclophosphamide (Cy) on days 1 and 2 after hatching and then injected with sporozoites from infected mosquitoes on day 4, the normal susceptibility of only one host cell type to the sequential invasive stages of the preerythrocytic forms of avian malaria (Plasmodium gallinaceum) is increased. Thus, only endothelial cells lining capillaries showed an increased susceptibility to invasion or development of second generation preerythrocytic parasites. There is some indication that such an increased susceptibility also occurs after X-irradiation of chicks but not after treatment with endotoxin. Neither the infectivity or development of sporozoites within macrophages nor the invasion of erythrocytes by parasites released from the tissues was apparently affected by Cy-treatment of chicks. Neither suppression of natural anti-sporozoite humoral antibody nor the possibility of suppression of acquired immunity to preerythrocytic stages of the parasite was shown to be responsible for the observed increased parasitemia of Cy-treated chicks. The apparent specificity of the immunosuppression of a natural immunity was ascertained by inoculation of a selected preerythrocytic stage into Cy-treated and control birds, and, in addition, by observing the increased tissue parasite levels of spleens and brains of similarly treated birds after sporozoite inoculation when compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号