首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
59.蒜素作高尔夫球场农药 根据日本1992年专利记载,含有蒜素(allicin)的成分可以用为高尔夫球场绿地的农药。大蒜提取物,包括蒜素和蛋白质作为主要成分,并加入植酸、硅酸和水。此成分不污染环境。40g植酸和10g硅酸溶于40kg水中,浸入大蒜20kg6天,即可用为农药。  相似文献   

2.
本文对香叶醇转化为硫代芳樟醇(4)及其衍生物的合成方法进行了研究。香叶醇与N,N-二甲基琉代氨基甲酰氯反应生成N,N—二甲基琉代氨基甲酸-O-香叶基酯(5),(5)通过[3,3]-σ迁移反应转变成N,N-二甲基硫代氨基甲酸-S-芳樟基酯(6),(6)进一步还原得到硫代芳樟醇(4)。(4)转变成衍生物硫代芳樟醇乙酸酯(7a)及芳樟基甲基疏醚(7b)。(4)及(7b)在高度稀释时具有愉快的热带水果香味。  相似文献   

3.
(一)大腸杆菌Escherichia coli K12M-1 的营养试验及细菌细胞内游离氨基酸变化的分析,确定为稚生素B12缺陷型变种。 (二)在诱导形成β-牛乳糖苷酶时,甲硫氨酸为其必需的物质,如果同时加入B12,则形成诱导酶的活力显著提高。 (三)当有甲硫氨酸存在于诱导系兢中时,a-硫代尿嘧啶有抑制大腸杆菌K12M-1菌株对β-半乳糖苷酶合成的作用,以B12代替甲硫氨酸,这种抑制作用不明显,如果甲硫氨酸与B12同时加入,则B12有抵制a-硫代尿嘧啶对酶合成的抑制作用。 (四)应用标记甘氨酸-1-C14作试验,分析甲硫氨酸与B12对β一半乳糖苷酶合成的作用, 结果指出,甲硫氨酸或B12均能增加甘氨酸-1-C14的参入。如B12加入到含有甲硫氧酸的诱导系统中,则酶此活力较甲硫氨酸或B12单独存在时为高。  相似文献   

4.
为研究亲代干旱锻炼对后代玉米生理特性和DNA甲基化修饰的影响,以亲代(G0代)经干旱锻炼的玉米自交系B73和H99自交后代(G1代)为材料,利用20% PEG 6000模拟干旱胁迫条件,检测G1和G0代叶片相对含水量(RWC)与丙二醛(MDA)、可溶性糖、脯氨酸含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性变化,并利用甲基化敏感扩增多态性技术(MSAP)检测G1和G0代基因组DNA甲基化状况,分析2个世代玉米生理指标和基因组DNA甲基化修饰的变异规律。结果表明:(1)在相同干旱胁迫条件下,玉米B73和H99 自交系G1代叶片的RWC、可溶性糖与脯氨酸含量以及SOD和POD活性均高于G0代,其G1代MDA含量则低于G0代;G1代叶片的RWC减少量和MDA增加量小于G0代,G1代可溶性糖和脯氨酸含量以及SOD和POD活性增加量均大于G0代。(2)干旱胁迫诱发了B73和H99 自交系G1和G0代DNA甲基化水平和甲基化模式的改变;在相同干旱胁迫条件下,两自交系G1代DNA甲基化修饰变化均大于G0代。(3)B73和H99 自交系DNA甲基化修饰变异规律不同,随胁迫时间延长,B73 自交系2个世代CG、CHG甲基化水平均呈上升趋势,H99 自交系2个世代CG甲基化水平呈上升趋势,CHG甲基化水平呈下降趋势;B73 自交系2个世代均以CG hypo和CHG hypo变化为主,H99 自交系2个世代均以CHG hypo和CG hyper变化为主。研究发现,B73和H99玉米自交系G1代植株的抗氧化和渗透调解能力以及DNA甲基化修饰变化均大于G0代,其抗旱性也强于G0代,从而证明玉米存在跨代干旱胁迫记忆。  相似文献   

5.
付雪  叶乐夫  谢宝瑜  戈峰 《生态学报》2011,31(6):1714-1719
玉米等C4植物被认为是华北Bt棉种植区内第三代棉铃虫最重要的天然庇护所,但尚缺乏直接证据。连续2a(2006-2007年)利用杨树把诱集棉铃虫成虫,进行碳稳定同位素比值的测定,并结合棉铃虫成虫捕获时间、虫源的数量比例等,评估C4植物在华北第三代棉铃虫期间的庇护所功能。结果表明,第三代棉铃虫成虫来源于C4植物(玉米)的为40.5%-56.8%,与C3来源的数量上大体相当。但C4来源的成虫羽化时间比C3来源的个体明显滞后,呈现出先少后多的特点。结果提示,C4植物确实是华北第三代棉铃虫重要的庇护所,但存在着时间上与C3来源的成虫交配不同步而失效的风险;结果建议玉米等天然庇护所作物的种植不仅在面积上要足够,而且播种时间上要充分考虑C4植物(玉米)来源的敏感棉铃虫个体的发育与C3植物寄主来源个体的同步性。  相似文献   

6.
7与镉7-金属硫蛋白清除羟自由基的比较   总被引:3,自引:0,他引:3  
分离及纯化兔肝金属硫蛋白.制备去金属金属硫蛋白、锌7与镉7金属硫蛋白.在不同pH条件下,比较后二者清除羟自由基能力;在pH6条件下,比较锌7-金属硫蛋白与有关蛋白和无机锌盐清除羟自由基效果.结论是在近生理pH条件下锌7-金属硫蛋白清除羟自由基能力远强于镉7-金属硫蛋白.金属硫蛋白清除羟自由基的能力主要来源于蛋白中处于还原态的流基.  相似文献   

7.
SNP标记对角膜混浊小鼠 突变相关基因的精细定位   总被引:5,自引:0,他引:5  
蒋荧梅  刘春  吴刘成  邵义祥 《遗传》2010,32(5):486-491
为深入研究前期工作中以ENU诱变技术建立的遗传性角膜混浊突变系小鼠(B6-Co)的遗传机制, 利用 SNP标记对其突变基因进行精细定位, 将该品系中具有角膜混浊表型的小鼠(B6-CoP)与DBA/2小鼠(简称D2)配种得到F1代, 再回交D2亲本品系得到F2代, 提取F2代角膜混浊小鼠鼠尾DNA。在MGI数据库中选取小鼠13号染色体已定位区间附近5个在C57BL/6(简称B6)和D2两个品系之间有差异的SNP, 应用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)技术及连锁分析方法对B6-Co小鼠突变基因进行精细定位。结果表明: B6-Co小鼠突变基因定位于13号染色体上112 546 283~113 397 654 bp之间, 因该区间内有5个已知基因, 其中Map3k1基因与小鼠眼睛形态生成和眼睑闭合密切相关, 提示Map3k1是B6-Co小鼠突变的强力候选基因。  相似文献   

8.
C3和C4植物寄主对华北地区棉铃虫越冬代和第一代的影响   总被引:1,自引:0,他引:1  
叶乐夫  付雪  戈峰 《生态学报》2011,31(2):449-454
确定华北越冬代棉铃虫虫源及其对第一代棉铃虫种群的影响是制定棉铃虫防治策略的基础。以越冬代棉铃虫蛾翅的稳定同位素δ13C为天然标记直接判定这些成虫的幼虫期寄主类型,并将雌虫接到春小麦植株上,调查其产卵、孵化、幼虫发育至化蛹、羽化等特征。结果表明,越冬代来自C3植物(主要为棉花)的成虫个体数量占全部越冬羽化种群的53.1%,所产生的下一代老熟幼虫也较C4来源的多(55.1%);雌蛾受精率都比较高;卵孵化率较高(52.9%>41.6%);幼虫发育在低龄阶段较比后者快,存活率低,但在高龄幼虫阶段相对后者慢,存活率高;与C4植物(主要玉米)的来源个体后代的幼虫发育总历期接近,总存活率也相近。显示寄主植物小麦提供的营养条件在第一代棉铃虫的幼虫发育中具有决定性意义,即小麦只在特定阶段才适合幼虫的发育;而且不论是C3还是C4寄主来源的越冬代棉铃虫已经适应了这一限制。有效地评价了玉米和棉花等寄主植物对华北地区越冬代和次年第一代棉铃虫的影响,对于分析越冬代棉铃虫的虫源性质和第一代棉铃虫的防治及Bt抗性的治理有重要参考价值。  相似文献   

9.
[背景] 部分细菌的DNA骨架会发生磷硫酰化修饰,硫结合结构域(Sulfur Binding Domain,SBD)可以特异性识别这种生理修饰。与绝大多数SBD-HNH双结构域核酸酶不同,ScoMcrA的SBD和HNH结构域中间插入了一个特异性识别5-甲基胞嘧啶(5mC)修饰DNA的SET and RING-Associated (SRA)结构域。晶体结构显示,单独的SBD是单体,而SBD-SRA是双体。[目的] 探究ScoMcrA中SRA结构域的存在对SBD识别硫修饰DNA的影响及影响方式。[方法] 凝胶迁移实验(Electrophoresis Mobility Shift Assay,EMSA)比较SBD、SBD-SRA对硫修饰DNA结合力的差异;对参与SBD-SRA二聚体化的关键氨基酸残基突变,并检测点突变对SBD-SRA蛋白二聚体化及结合硫修饰DNA的影响。[结果] 相较于SBD结构域,SBD-SRA双结构域对磷硫酰化修饰DNA的结合能力明显增强。对SBD-SRA双体互作界面进行单点突变基本不影响其对硫修饰DNA的结合,当二聚体化界面连续的L261LGET265突变成A261AAAA265时,突变体对硫修饰DNA的结合力下降到与SBD相似的水平。[结论] 根据EMSA实验结果可以初步判断,SRA结构域介导的SBD-SRA双体化能增强SBD对硫修饰DNA的结合力;L261LGET265是SRA结构域上影响SBD对硫修饰DNA结合力的关键氨基酸位点。  相似文献   

10.
研究了利用含D-氨基酸氧化酶(Damino acid oxidase, DAO EC1.4.3.3)的透性化三角酵母多倍体FA10(Trigonopsis variabilis FA10)细胞酶促转化头孢菌素(Ccephalosporin> C, CPC)为戊二酰-7-氨基头孢烷酸(Glutaryl-7-ACA,GL-7-ACA)的反应过程和细胞中同时存在的过氧化氢酶(Catalase, CAT)通过水解H2O2而对转化反应产生的干扰作用及其对策。实验证明适量添加外源H2O2(6%)或在反应体系中加入过氧化氢酶抑制剂NaN3(0.13mg/mL)可使GL-7-ACA生成率分别为73.0%和70.1%。如果将透性化的FA10细胞在pH10.5~11.0,20℃条件下保温30min,CAT被不可逆性完全钝化,以无过氧化氢酶的FA10细胞进行CPC的酶促转化反应,GL-7ACA的生成率可达84%。  相似文献   

11.
Kim YS  Kim KS  Han I  Kim MH  Jung MH  Park HK 《PloS one》2012,7(6):e38242
The antifungal activity of allicin and its synergistic effects with the antifungal agents flucytosine and amphotericin B (AmB) were investigated in Candida albicans (C. albicans). C. albicans was treated with different conditions of compounds alone and in combination (allicin, AmB, flucytosine, allicin + AmB, allicin + flucytosine, allicin + AmB + flucytosine). After a 24-hour treatment, cells were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to measure morphological and biophysical properties associated with cell death. The clearing assay was conducted to confirm the effects of allicin. The viability of C. albicans treated by allicin alone or with one antifungal drug (AmB, flucytosine) in addition was more than 40% after a 24-hr treatment, but the viability of groups treated with combinations of more than two drugs was less than 32%. When the cells were treated with allicin alone or one type of drug, the morphology of the cells did not change noticeably, but when cells were treated with combinations of drugs, there were noticeable morphological changes. In particular, cells treated with allicin + AmB had significant membrane damage (burst or collapsed membranes). Classification of cells according to their cell death phase (CDP) allowed us to determine the relationship between cell viability and treatment conditions in detail. The adhesive force was decreased by the treatment in all groups compare to the control. Cells treated with AmB + allicin had a greater adhesive force than cells treated with AmB alone because of the secretion of molecules due to collapsed membranes. All cells treated with allicin or drugs were softer than the control cells. These results suggest that allicin can reduce MIC of AmB while keeping the same efficacy.  相似文献   

12.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

13.
The volatile substance allicin gives crushed garlic (Allium sativum) its characteristic odor and is a pro-oxidant that undergoes thiol-disulfide exchange reactions with -SH groups in proteins and glutathione. The antimicrobial activity of allicin is suspected to be due to the oxidative inactivation of essential thiol-containing enzymes. We investigated the hypothesis that at threshold inhibitory levels allicin can shunt yeast cells into apoptosis by altering their overall redox status. Yeast cells were treated either with chemically synthesized, pure allicin or with allicin in garlic juice. Allicin-dependent cell oxidation was demonstrated with a redox-sensitive GFP construct and the shift in cellular electrochemical potential (E(hc)) from less than -215 to -181mV was calculated using the Nernst equation after the glutathione/glutathione disulfide couple (2GSH/GSSG) in the cell was quantified. Caspase activation occurred after allicin treatment, and yeast expressing a human antiapoptotic Bcl-XL construct was rendered more resistant to allicin. Also, a yeast apoptosis-inducing factor deletion mutant was more resistant to allicin than wild-type cells. We conclude that allicin in garlic juice can activate apoptosis in yeast cells through its oxidizing properties and that this presents an alternative cell-killing mechanism to the previously proposed specific oxidative inactivation of essential enzymes.  相似文献   

14.
周思艺  夏静  闫琴  芦韬  陈利荣  刘威 《昆虫学报》2022,65(2):197-207
[目的]研究果蝇对大蒜素的产卵选择,并解析果蝇产卵避性的机制和生物学意义.[方法]应用产卵双向选择装置,检测黑腹果蝇Drosophila melanogaster雌成虫对0.01%,0.015%和0.02%大蒜素的产卵选择性;利用产卵装置,检测黑腹果蝇对大蒜素的位置效应;通过毛细管摄食法检测黑腹果蝇摄食行为;利用黑暗(...  相似文献   

15.
Thermostability of allicin determined by chemical and biological assays   总被引:2,自引:0,他引:2  
The garlic-derived antibacterial principle, alk(en)yl sulfinate compounds, has long been considered as very short-lived substance. However, there are some data showing a rather more stable nature of allicin. We determined here the thermostability of allicin by a systematic analyses employing chemical quantification and an antibacterial activity assay. Allicin in an aqueous extract of garlic was degraded stoichiometrically in proportion to the temperature; we estimated the half-life of allicin to be about a year at 4 degrees C (from 1.8 mg/ml to 0.9 mg/ml) and 32 d at 15 degrees C, but only 1 d at 37 degrees C (from 2.0 mg/ml to 1.0 mg/ml). The half-life values for antibacterial activity showed a similar trend in results: 63 d or more at 4 degrees C for both antibacterial activities, 14 d for anti-staphylococcal activity, and 26 d for anti-escherichia activity at 15 degrees C, but only 1.2 d and 1.9 d for the respective activities at 37 degrees C. Such antibacterial activities were attributable to the major allicin, allyl 2-propenylthiosulfinate. Surprisingly, the decline in the quantity of allicin was not accompanied by its degradation; instead, allicin became a larger molecule, ajoene, which was 3-times larger than allicin.  相似文献   

16.
The garlic-derived antibacterial principle, alk(en)yl sulfinate compounds, has long been considered as very short-lived substance. However, there are some data showing a rather more stable nature of allicin. We determined here the thermostability of allicin by a systematic analyses employing chemical quantification and an antibacterial activity assay. Allicin in an aqueous extract of garlic was degraded stoichiometrically in proportion to the temperature; we estimated the half-life of allicin to be about a year at 4 °C (from 1.8 mg/ml to 0.9 mg/ml) and 32 d at 15 °C, but only 1 d at 37 °C (from 2.0 mg/ml to 1.0 mg/ml). The half-life values for antibacterial activity showed a similar trend in results: 63 d or more at 4 °C for both antibacterial activities, 14 d for anti-staphylococcal activity, and 26 d for anti-escherichia activity at 15 °C, but only 1.2 d and 1.9 d for the respective activities at 37 °C. Such antibacterial activities were attributable to the major allicin, allyl 2-propenylthiosulfinate. Surprisingly, the decline in the quantity of allicin was not accompanied by its degradation; instead, allicin became a larger molecule, ajoene, which was 3-times larger than allicin.  相似文献   

17.
To investigate the effect of dietary allicin on health and growth performance of weanling piglets, at 21 days of age. Two hundred and twenty-five piglets were weaned and randomly allocated into five groups. Piglets in the control group were fed diets supplemented with antibiotics. Those in the treatment groups were fed diets without antibiotics, but supplemented with allicin product (25% pure allicin oil) in the proportion of 0.10 g/kg, 0.15 g/kg, 0.20 g/kg and 0.25 g/kg in the diet, respectively. During the 28 days of the experiment, average daily weight gain increased linearly (P < 0.0001) and quadratically (P = 0.0014) as the level of dietary allicin increased. The feed gain ratio decreased linearly (P < 0.0001) and quadratically (P < 0.0001). As the dietary allicin level increased, the incidence of diarrhoea in the treatment piglets, especially female piglets decreased linearly (P = 0.0003) and tended to decrease quadratically (P = 0.0716). The number of flies alighting on the surface of the faeces of the piglets at each counting time point decreased linearly (P < 0.0001), quadratically (P < 0.0001) and cubically (P < 0.0001) as the dietary allicin level increased. In conclusion, supplementation of the diet with allicin may improve growth performance, reduce the incidence of diarrhoea and possibly improve their local environmental conditions by reducing the attractiveness of faeces to flies.  相似文献   

18.
The efficacy of allicin compared with fluconazole in alleviating systemic Candida albicans infections was evaluated both in vitro and in vivo through a systemic candidiasis mouse model. Determination of in vitro minimum inhibitory concentrations (MICs) for different C. albicans isolates revealed that both allicin and fluconazole showed different MICs that ranged from 0.05 to 12.5 μg mL(-1) and 0.25 to 16 μg mL(-1) , respectively. A time-kill study showed a significant effect of allicin (P<0.01) against C. albicans, comparable to that of fluconazole. Scanning electron microscopy observation revealed that, similar to fluconazole, allicin produced structural destruction of C. albicans cell surface at low MIC and lysis or puncture at high MIC concentrations. Treatment of BALB/c mice systemically infected with C. albicans showed that although the allicin treatment (at 5 mg kg(-1) day(-1) ) was slightly less efficacious than fluconazole treatment in terms of the fungal load reduction and host survival time, it was still effective against C. albicans in terms of mean survival time, which increased from 8.4 to 15.8 days. These results demonstrate the efficacy of anticandidal effects of allicin both in vitro and in an animal model of candidiasis and affirm the potential of allicin as an adjuvant therapy to fluconazole.  相似文献   

19.

Background

Allicin has received much attention due to its anti-proliferative activity and not-well elucidated underlying mechanism of action. This work focuses towards determining the cellular toxicity of allicin and understanding its interaction with nucleic acid at molecular level.

Methods

MTT assay was used to assess the cell viability of A549 lung cancer cells against allicin. Fourier transform infrared (FTIR) and UV-visible spectroscopy were used to study the binding parameters of nucleic acid-allicin interaction.

Results

Allicin inhibits the proliferation of cancer cells in a concentration dependent manner. FTIR spectroscopy exhibited that allicin binds preferentially to minor groove of DNA via thymine base. Analysis of tRNA allicin complex has also revealed that allicin binds primarily through nitrogenous bases. Some amount of external binding with phosphate backbone was also observed for both DNA and RNA. UV visible spectra of both DNA allicin and RNA allicin complexes showed hypochromic shift with an estimated binding constant of 1.2 × 104 M- 1 for DNA and 1.06 × 103 M− 1for RNA binding. No major transition from the B-form of DNA and A-form of RNA is observed after their interaction with allicin.

Conclusions

The results demonstrated that allicin treatment inhibited the proliferation of A549 cells in a dose-dependent manner. Biophysical outcomes are suggestive of base binding and helix contraction of nucleic acid structure upon binding with allicin.

General significance

The results describe cytotoxic potential of allicin and its binding properties with cellular nucleic acid, which could be helpful in deciphering the complete mechanism of cell death exerted by allicin.  相似文献   

20.
目的研究大蒜素对口腔变异链球菌生长及其菌斑生物膜粘附的抑制作用。方法二倍稀释法梯度稀释测最小抑菌浓度(minimum inhibitory concentration,MIC),将MIC以上2个梯度浓度对应的培养物涂布于BHI培养基上进行次代培养获得最低杀菌浓度(minimum bactericidal concentration,MBC);酶标仪测A值观察不同浓度大蒜素抑菌效应;抑制产酸试验观察抑制细菌产酸效应;结晶紫法研究亚抑菌浓度提取物对变异链球菌粘附能力及生物膜总量的影响;采用激光共聚焦荧光显微镜(laser scanning confocal microscopy,LSCM)观察常态牙菌斑生物膜生长过程中及药物处理后牙菌斑生物膜中死菌和活菌的构成,研究其对牙菌斑生物膜结构和活性的影响。结果抑菌试验中,得到大蒜素MIC为12.8 mg/L,MBC为25.8 mg/L。MIC及亚抑菌浓度抑菌试验显示均有一定的抑菌性,抑制率为2.17%~67.12%,并且抑菌性与浓度梯度成正相关。产酸试验显示24 h内大蒜素明显抑制细菌产酸(P0.01),细菌粘附试验结果显示大蒜素在MIC时生物膜的生成速度最慢,生物膜的总量最低(P0.01)。共聚焦荧光显微镜可见大蒜素组随药物浓度增加,菌斑生物膜较薄,绿色的活菌及团块明显减少,抑制生物膜的生长。结论大蒜素对变异链球菌生长、产酸与粘附有一定抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号