首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chondroitinase ABC catalyzing the depolymerization of chondroitin sulfate was induced by incubating the Proteus vulgaris cells in a medium containing chondroitin C sulfate as an inducer. Incubation of P. vulgaris cells for 12 h in the presence of 0.3% inducer was optimal to obtain the cells with highly active chondroitinase ABC. Such cells were immobilized in k-carrageenan gel lattice, and some properties of chondroitinase ABC in immobilized cells were studied in comparison with those of the enzyme without immobilization (free enzyme). The stabilities of the enzyme toward heat and storage were remarkably improved by immobilizing the cells in k-carrageenan gel lattice. Optimal pH and temperature for activity of the enzyme were slightly shifted to the alkaline region and higher temperature by immobilization and were 9.0 and 35 degrees C, respectively.  相似文献   

2.
The production of ethanol by Saccharomyces cerevisiae immobilized cells and its esterification with oleic acid, catalysed by a lipase from Rhizomucor miehei, was the biochemical process considered as model to illustrate the concept of extractive biocatalysis. The selection of the most suitable support for lipase immobilization was carried out. The best results for the ethanol/oleic acid esterification reaction were obtained with the lipase adsorbed on a polyamide type support, Accurel EP 700. The immobilization method was optimized in terms of immobilization pH, contact time and protein/support ratio. The better performances of the extractive fermentations of ethanol were obtained when entrapped k-carrageenan Saccharomyces cerevisiae cells and a lipase from Rhizomucor miehei, free or immobilized in Accurel EP 700, were used simultaneously. The observed reutilization capacity of the immobilized enzyme could be advantageous for its application in a continuous reactor.  相似文献   

3.
Whole cells of the phytopathogenic Erwinia chrysanthemi strains were immobilized in k-carrageenan and grown in high-calcium Xanthomonas campestris medium containing sodium polypectate as carbon source. All the strains used survived immobilization into k-carrageenan beads. Immobilized E. chrysanthemi strains displayed higher pectolytic and proteolytic enzyme activities than free cells in liquid suspension. Carrageenan immobilization techniques could provide a system to mimic the conditions of E. chrysanthemi cells in the infected plant tissue. This could prompt a thorough study of the factors governing the biosynthesis of virulence factors by this bacterium. Journal of Industrial Microbiology & Biotechnology (2001) 27, 215–219. Received 04 April 2001/ Accepted in revised form 12 June 2001  相似文献   

4.
In the present of this study, two novel polymeric matrixes that are poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/kappa-Carrageenan was synthesized and applied for immobilization of lipase. For the immobilization of enzyme, two different immobilization procedures have been carried out via covalently binding and entrapment methods. On the free and immobilized enzymes activities, optimum pH, temperature, storage and thermal stability was investigated. The optimum temperature for free, covalently immobilized and entrapped enzymes was found to be 30, 35 and 30 degrees C, respectively. Optimum pH for both free and immobilized enzymes was also observed at pH 8. Maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were determined for free and immobilized lipases. Furthermore, the reuse numbers of immobilized enzymes also studied. It was observed that after 40th use in 5 days, the retained activities for covalently immobilized and entrapped lipases were found as 39% and 22%, respectively. Storage and thermal stability of enzyme was also increased by as a result of immobilization procedures.  相似文献   

5.
Biotransformation of colchicine into regiospecific 3-demethylated colchicine (3-DMC) which is pharmacologically active and a potent anti-cancer drug, mediated by immobilization of recombinant microbial monooxygenases is a novel and promising strategy for its production. In the present study, recombinant Escherichia coli expressing P450 BM-3 was immobilized in calcium-alginate beads and its ability to catalyze colchicine into 3-DMC was investigated. Characteristics of immobilized system showed that optimum conditions for activity of microbial cells were not affected due to immobilization. The optimum pH and temperature for both free and immobilized cells were found to be 7.5 and 37.5 °C, respectively. Experimental variables under consideration such as Ca2+ concentration, alginate concentration, P450 BM-3 enzyme activity and colchicine concentration were optimized using response surface methodology. The immobilized cells exhibited a markedly improved thermal stability as compared to free cells. The yield of 3-DMC with immobilized microbial cells was found to be an average of 69%, with 82, 73 and 52% across three independent batches in succession as against bioconversion by free cells, which indicated improved operational stability and reusability of immobilized cells in batch processes. Additionally, a packed bed reactor has been proposed for the immobilized biocatalytic system for bioconversion of colchicine and other biochemicals.  相似文献   

6.
In this study, porcine pancreatic lipase (EC 3.1.1.3) was immobilized on chitin and chitosan by adsorption and subsequent crosslinking with glutaraldehyde, which was added before (conjugation) or after (crosslinking) washing unbound proteins. Conjugation proved to be the better method for both supports. The properties of free and immobilized enzymes were also investigated and compared. The results showed that the pH optimum was shifted from 8.5 to 9.0 for both the immobilized enzymes. Also, the optimum temperature was shifted from 30 to 40 degrees C for chitin-enzyme and to 45 degrees C for chitosan-enzyme conjugates. The immobilization efficiency is low, but the immobilized enzymes have good reusability and stability (storage and operational). Besides these properties, the immobilized lipases were also suitable for catalyzing esterification reactions of fatty acids and fatty alcohols, both with a medium chain length. According to our results, esterification activities of immobilized lipases were two- and four-fold higher for chitosan- and chitin-enzyme, than for the free enzyme, respectively. The immobilization procedure shows a great potential for commercial applications of the immobilized lipase, a relatively low cost commercial enzyme.  相似文献   

7.
The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.  相似文献   

8.
Summary The maximal concentration of ethanol produced during the fermentation of 320 g/l glucose bySaccharomyces bayanus was higher when the yeast cells were immobilized either by adsorption on celite or by entrapment in k-carrageenan beads (from 10.5% with free cells up to 14.5% and 13.1% (v/v) respectively). This increase was due to medium supplementation with the compounds present in the immobilization supports.  相似文献   

9.
Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support (qm) and dissociation constant (Kd) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at 65 degrees C. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.  相似文献   

10.
In this study, a new matrix for immobilization of acetylcholinesterase was investigated by using alginate and kappa-carrageenan. The effects of pH, temperature, storage and thermal stability on the free and immobilized acetylcholinesterase activity were examined. Maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) was also investigated for free and immobilized enzymes. For free and immobilized enzymes into Ca-alginate and alginate/kappa-carrageenan polymer blends, optimum pH and temperature was found to be 7 and 30 degrees C, respectively. For free enzyme, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) values were found to be 6.35 mM and 50 mM min(-1), respectively, the same values for immobilized enzymes were determined as 8.68, 12.7 mM and 39.7, 52.9 mM min(-1), respectively. Storage and thermal stability of acetylcholinesterase was increased by as a result of immobilization.  相似文献   

11.
A continuous production of fructooligosaccharides from sucrose was investigated by fructosyltransferase immobilized on a high porous resin, Diaion HPA 25. The optimum pH (5.5) and temperature (55°C) of the enzyme for activity was unaltered by immobilization, and the immobilized enzyme became less sensitive to the pH change. The optimal operation conditions of the immobilized enzyme column for maximizing the productivity were as follows: 600 g/L of sucrose feed concentration, flow rate of superficial space velocity 2.7 h?1. When the enzyme column was run at 50°C, about 8% loss of the initial activity of immobilized enzyme was observed after 30 days of continuous operation, during which high productivity of 1174 g/L·h was achieved. The kinds of products obtained using the immobilized enzyme were almost the same as those using soluble enzymes or free cells.  相似文献   

12.
The dried and wet chitosan-clay composite beads were prepared by mixing equal weights of cuttlebone chitosan and activated clay and then spraying drop-wise through a syringe, with and without freeze-drying, respectively. These beads were then immersed in 5 g/L of glutaraldehyde solution at a dosage of 0.5 g/L and were cross-linked, which were finally used as supports for beta-glucosidase immobilization. The properties of the enzyme immobilized on wet- and dried-composite beads were compared. Kinetic modeling of thermal inactivation of free and immobilized enzymes was also investigated. For a given enzymatic reaction, the rate constant related to the decomposition of the enzyme-substrate complex to final product and the uncomplexed enzyme using dried-composite immobilized enzyme was larger than those using both free and wet-composite immobilized enzymes.  相似文献   

13.
Fang Y  Huang XJ  Chen PC  Xu ZK 《BMB reports》2011,44(2):87-95
Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.  相似文献   

14.
Alpha-galactosidase was immobilized in a mixture of k-carrageenan and locust bean gum. The properties of the free and immobilized enzyme were then determined. The optimum pH for both the soluble and immobilized enzyme was 4.8. The optimum temperature for the soluble enzymes was 50 degrees C, whereas that for the immobilized enzyme was 55 degrees C. The immobilized enzyme was used in batch, repeated batch, and continuous modes to degrade the raffinose-family sugars present in soymilk. Two hours of incubation with the free and immobilized alpha-galactosidases resulted in an 80% and 68% reduction in the raffinose oligosaccharides in the soymilk, respectively. In the repeated batch, a 73% reduction was obtained in the fourth cycle. A fluidized bed reactor was also designed to treat soymilk continuously and the performance of the immobilized alpha-galactosidase tested at different flow rates, resulting in a 90% reduction of raffinose-family oligosaccharides in the soymilk at a flow rate 40 ml/h. Therefore, the present study demonstrated that immobilized alpha-galactosidase in a continuous mode is efficient for reducing the oligosaccharides present in soymilk, which may be of considerable interest for industrial application.  相似文献   

15.
Traditional covalent immobilization of enzymes was mostly operated within water phase. However, most of enzymes are flexible when they are in water environment, and the covalent reactions generally lead to complete or partial activity losing due to the protein conformational changes.This paper examined enzyme covalent immobilization operated in micro-aqueous organic media, to display the differences between two environments of immobilization within water and micro-aqueous organic solvent by activity and stability determination of the resulting immobilized enzymes. Catalase, trypsin, horseradish peroxidase, laccase and glucose oxidase have been employed as model enzymes. Results showed the thermal, pH and reusable stabilities of the micro-aqueous organic covalently immobilized enzymes were improved when compared with the immobilized enzymes within water. Micro-aqueous covalent immobilization showed a remarkable advantage in remaining the enzymes catalytic activity for all the five enzymes compared with the traditional water phase immobilization. And the optimum pH values for both immobilization within water and micro-aqueous organic media shifted slightly.  相似文献   

16.
The production of hybrid enzymes with novel properties and the research for new methods for enzyme immobilization in bioreactors are of major interest in biotechnology. We report here the second part of a study concerning the improvement of the properties of the endoxylanase XYN3A4 from the anaerobic fungi Neocallimastix frontalis. The effects of gene fusion and immobilization on metal-chelate matrix are also compared for the reference enzymes XYN3, XYN3A, XYN4 used for the construction of the fusion protein XYN3A4. The influence of the metal ion in the immobilization process was first investigated and best immobilization yields were obtained with the Cu(II) ion whereas best coupling efficiencies were reached with the Ni(II) ion. It was also observed that XYN3, XYN3A and XYN34 had a lower rate of hydrolysis when immobilized on Ni(II)-IDA and more difficulties to accomodate small substrates than the soluble enzymes. Nevertheless, a major difference was noted during the hydrolysis of birchwood xylan and it appears that the reaction using the immobilized XYN3A4 chimeric enzyme leads to the accumulation of a specific product.  相似文献   

17.
Three β-d-galactosidases (β-d-galactoside galactohydrolase, EC 3.2.1.23) from different origins have been immobilized on sucrose-polyacrolein and sucrose sulphate-polyacrolein. This gave enzyme conjugates insoluble in the immobilization medium but which could be made soluble by reduction with sodium borohydride before use. The optimum conditions for both copolymer synthesis and the immobilization reaction were investigated. I.r. and 13C n.m.r. spectroscopy were used to follow the sulphation and the copolymerization reaction. The characteristics of the enzyme conjugates were compared with those of the free enzymes: the Vmax values of the enzyme conjugates were lower than those of the corresponding free enzymes, whilst the Km values were similar. The thermal stability of the enzyme conjugates depended on the enzyme origin, while their pH stability was in all cases higher than that of the free enzymes. These data suggest some advantages in using enzyme immobilization supports which can be made soluble after separation of the immobilized enzyme without altering the enzyme characteristics.  相似文献   

18.
α-Galactosidase from tomato has been immobilized on Sepabead EC-EA and Sepabead EC-HA, which were activated with ethylendiamino and hexamethylenediamino groups, respectively. Two strategy was used for the covalent immobilization of α-galactosidase on the aminated Sepabeads: covalent immobilization of enzyme on glutaraldehyde activated support and cross-linking of the adsorbed enzymes on to the support with glutaraldehyde. By using these two methods, all the immobilized enzymes retained very high activity and the stability of the enzyme was also improved. The obtained results showed that, the most stable immobilized α-galactosidase was obtained with the second strategy. The immobilized enzymes were characterized with respect to free counterpart. Some parameters effecting to the enzyme activity and stability were also analyzed. The optimum temperature and pH were found as 60 °C and pH 5.5 for all immobilized enzymes, respectively. All the immobilized α-galactosidases were more thermostable than the free enzyme at 50 °C. The stabilities of the Sepabead EC-EA and EC-HA adsorbed enzymes treated with glutaraldehyde compared to the stability of the free enzyme were a factor of 6 for Sepabead EC-EA and 5.3 for Sepabead EC-HA. Both the free and immobilized enzymes were very stable between pH 3.0 and 6.0 and more than 85% of the initial activities were recovered. Under the identical storage conditions the free enzyme lost its initial activity more quickly than the immobilized enzymes at the same period of time. The immobilized α-galactosidase seems to fulfill the requirements for different industrial applications.  相似文献   

19.
Porcine pancreatic lipase (EC 3.1.1.3) was covalently immobilized onto 2,4,6-trichloro-s-triazine (cyanuric chloride) activated polyvinyl alcohol (PVA). The influence of activating agent and enzyme concentration on the immobilization process were evaluated.Hydrolytic activities of free and immobilized enzyme were determined and the immobilization yield was estimated by measuring the quantity of protein, both in free enzyme solution and in washing solutions after immobilization. After the optimization of immobilization process, the physical and chemical characterization of immobilized enzyme was performed. Additionally, the thermal, pH, storage, and operational stability of the immobilized and free enzymes were tested. Obtained data showed that the immobilized enzyme seemed better and offered some advantages in comparison with free enzyme.  相似文献   

20.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号