首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The comparative distribution of tyrosinated, detyrosinated, and acetylated alpha-tubulins was examined in neurites of rat dorsal root ganglion neurones in culture using immunofluorescence microscopy. Phase contrast observations of single neurones revealed that the neurites were actively motile, and rhodamine phalloidin staining of actin filaments showed the extent of lamellopodia and microspike projections from the growth cones. From double-labelling experiments using antibodies against tyrosinated, detryrosinated, or acetylated alpha-tubulin, it was found that the three different isoforms were differentially localised in neurites and growth cones. Detyrosinated and acetylated forms of alpha-tubulin were in the main restricted to the neurites extending no further than the base of the growth cones. Tyrosinated alpha-tubulin was, however, distributed throughout the body of the growth cone and into the base of some microspikes. Following treatment with taxol to promote microtubule assembly, detyrosinated and acetylated alpha-tubulins were found to be colocalised with tyrosinated alpha-tubulins throughout the growth cones of all cells examined. These results would be consistent with axonal transport of tyrosinated alpha-tubulin followed by assembly in the growth cone and subsequent detyrosination and acetylation. In addition the presence of unmodified alpha-tubulin in the growth cone may be necessary for the provision of labile microtubules for growth cone motility and extension.  相似文献   

2.
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.  相似文献   

3.
1. Posttranslational modifications of tubulin by acetylation and detyrosination have been correlated previously with microtubule stability in numerous cell types. 2. In this study, posttranslational modifications of tubulin and their regional distribution within teleost photoreceptor cones and rods are demonstrated immunohistochemically using antibodies specific for acetylated, detyrosinated, or tyrosinated tubulin. 3. Immunolocalization was carried out on isolated whole cones and mechanically detached rod and cone inner/outer segments. 4. Acetylated tubulin within rods and cones is found only in microtubules of the ciliary axoneme of the outer segment. Detyrosinated tubulin is also enriched in axonemes of both rod and cone outer segments. 5. Distributions of tyrosinated and detyrosinated cytoplasmic microtubules differ within cones and rods. In cones, detyrosinated and tyrosinated tubulins are both abundant throughout the cell body. In rods, the ellipsoid and myoid contain much more tyrosinated tubulin than detyrosinated tubulin. Comparisons between whole cones and cone fragments suggest that detyrosinated microtubules are more stable than tyrosinated microtubules in teleost photoreceptors. 6. Our findings provide further evidence that microtubules of teleost cones differ from rod microtubules in their stabilities and rapidity of turnover within the photoreceptor inner segment.  相似文献   

4.
During adhesion-mediated neuronal growth cone guidance microtubules undergo major rearrangements. However, it is unknown whether microtubules extend to adhesion sites because of changes in plus-end polymerization and/or translocation dynamics, because of changes in actin-microtubule interactions, or because they follow the reorganization of the actin cytoskeleton. Here, we used fluorescent speckle microscopy to directly quantify microtubule and actin dynamics in Aplysia growth cones as they turn towards beads coated with the cell adhesion molecule apCAM. During the initial phase of adhesion formation, dynamic microtubules in the peripheral domain preferentially explore apCAM-beads prior to changes in growth cone morphology and retrograde actin flow. Interestingly, these early microtubules have unchanged polymerization rates but spend less time in retrograde translocation due to uncoupling from actin flow. Furthermore, microtubules exploring the adhesion site spend less time in depolymerization. During the later phase of traction force generation, the central domain advances and more microtubules in the peripheral domain extend because of attenuation of actin flow and clearance of F-actin structures. Microtubules in the transition zone and central domain, however, translocate towards the adhesion site in concert with actin arcs and bundles, respectively. We conclude that adhesion molecules guide neuronal growth cones and underlying microtubule rearrangements largely by differentially regulating microtubule-actin coupling and actin movements according to growth cone region and not by controlling plus-end polymerization rates.  相似文献   

5.
Neutrophil activation by specific stimuli, such as the oligopeptide chemotactic factor fMet-Leu-(fMLF), is associated with an increased enzymatic addition of tyrosine to tubulin α -subunits, as measured by 14C tyrosine uptake. In studies using immunoblots we have found that this increased tyrosine uptake into tubulin in activated neutrophils reflects an increase in the proportion of cellular tubulin that is tyrosinated rather than simply an increase in the turnover of tyrosinated subunits. However, the increased accumulation of tyrosinated tubulin was also found to follow an initial depletion of tyrosinated tubulin and concomitant increase in detyrosinated tubulin between 0 and 60 sec following stimulation of neutrophils with fMLF. Immunogold electron microscopy studies of intact micro tubules recovered from activated neutrophils demonstrated that these rapid changes in the relative content of tubulin isoforms in the cells were not associated with the formation or disappearance of microtubule microdomains composed of only one form of tubulin. Previously, we have shown that under conditions of fMLF-stimulated exocytosis there is an increased binding of neutrophil granules to endogenous microtubules. Since neutrophil activation by fMLF is associated with increased tyrosination of α -tubulin subunits, we speculated that rapid changes in the levels of tyrosinated tubulin in the microtubules of activated neutrophils might have a role in the regulation of granule-microtubule interactions. When the binding of purified neutrophil granules to reconstituted rat brain microtubules containing approximately 50% tyrosinated tubulin was measured by electron microscopy and compared with granule binding to microtubules that contained no detectable tyrosinated tubulin, granule-microtubule associations were found to be significantly favored by detyrosinated vs. tyrosinated tubulin. These findings indicate that interactions between cytoplasmic granules and microtubules in activated neutrophils may be modulated by rapid changes in the relative content of detyrosinated and tyrosinated tubulin in the microtubule network of the cells. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The actin filament (F-actin) cytoskeleton is thought to be required for normal axon extension during embryonic development. Whether this is true of axon regeneration in the mature nervous system is not known, but a progressive simplification of growth cones during development has been described and where specifically investigated, mature spinal cord axons appear to regenerate without growth cones. We have studied the cytoskeletal mechanisms of axon regeneration in developmentally early and late chicken sensory neurons, at embryonic day (E) 7 and 14 respectively. Depletion of F-actin blocked the regeneration of E7 but not E14 sensory axons in vitro. The differential sensitivity of axon regeneration to the loss of F-actin and growth cones correlated with endogenous levels of F-actin and growth cone morphology. The growth cones of E7 axons contained more F-actin and were more elaborate than those of E14 axons. The ability of E14 axons to regenerate in the absence of F-actin and growth cones was dependent on microtubule tip polymerization. Importantly, while the regeneration of E7 axons was strictly dependent on F-actin, regeneration of E14 axons was more dependent on microtubule tip polymerization. Furthermore, E14 axons exhibited altered microtubule polymerization relative to E7, as determined by imaging of microtubule tip polymerization in living neurons. These data indicate that the mechanism of axon regeneration undergoes a developmental switch between E7 and E14 from strict dependence on F-actin to a greater dependence on microtubule polymerization. Collectively, these experiments indicate that microtubule polymerization may be a therapeutic target for promoting regeneration of mature neurons.  相似文献   

7.
Sensory cells in the organ of Corti exhibit loose microtubule networks enriched in tyrosinated tubulin, whereas supporting cells have bundled microtubules containing post-translationally modified tubulin. The tubulin isoform distribution suggests that the microtubules in sensory cells are dynamic and those in supporting cells are stable. To test this, microtubule resistance to cold-induced depolymerization was examined by using immunocytochemical methods and antibodies to post-translationally modified tubulins. Microtubule labelling in cochleas perfused/immersed at room temperature was identical to that in previous studies of untreated cochleas. However, the microtubule patterns of perfused/immersed specimens were changed in cold-treated cochleas. Microtubules were no longer detected with antibodies to alpha- and tyrosinated tubulin in sensory cells from specimens exposed to cold, indicating their disassembly. Supporting cells in the same specimens showed almost total loss of detyrosinated and polyglutamylated tubulin in the middle and apical cochlear turns, and reduced labelling in the basal-most turn. Probing for alpha-, nontyrosinatable, acetylated and glycylated tubulin yielded decreased and sometimes patchy staining but these isoforms were observed even when detyrosinated and polyglutamylated tubulins were absent. The results indicate that sensory cells in the gerbil auditory sensory epithelium contain only cold-sensitive microtubules. In contrast, supporting cells possess a substantial subset of cold-stable microtubules, providing structural support to the vibratory sensory organ required for hearing.  相似文献   

8.
Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.  相似文献   

9.
Actions of cytochalasin B (CB) on cytoskeletons and motility of growth cones from cultured Aplysia neurons were studied using a rapid flow perfusion chamber and digital video light microscopy. Living growth cones were observed using differential interference contrast optics and were also fixed at various time points to assay actin filament (F-actin) and microtubule distributions. Treatment with CB reversibly blocked motility and eliminated most of the phalloidin-stainable F-actin from the leading lamella. The loss of F-actin was nearly complete within 2-3 min of CB application and was largely reversed within 5-6 min of CB removal. The loss and recovery of F-actin were found to occur with a very distinctive spatial organization. Within 20-30 s of CB application, F-actin networks receded from the entire peripheral margin of the lamella forming a band devoid of F-actin. This band widened as F-actin receded at rates of 3-6 microns/min. Upon removal of CB, F-actin began to reappear within 20-30 s. The initial reappearance of F-actin took two forms: a coarse isotropic matrix of F-actin bundles throughout the lamella, and a denser matrix along the peripheral margin. The denser peripheral matrix then expanded in width, extending centrally to replace the coarse matrix at rates again between 3-6 microns/min. These results suggest that actin normally polymerizes at the leading edge and then flows rearward at a rate between 3-6 microns/min. CB treatment was also observed to alter the distribution of microtubules, assayed by antitubulin antibody staining. Normally, microtubules are restricted to the neurite shaft and a central growth cone domain. Within approximately 5 min after CB application, however, microtubules began extending into the lamellar region, often reaching the peripheral margin. Upon removal of CB, the microtubules were restored to their former central localization. The timing of these microtubule redistributions is consistent with their being secondary to effects of CB on lamellar F-actin.  相似文献   

10.
Repulsive guidance cues can either collapse the whole growth cone to arrest neurite outgrowth or cause asymmetric collapse leading to growth cone turning. How signals from repulsive cues are translated by growth cones into this morphological change through rearranging the cytoskeleton is unclear. We examined three factors that are able to induce the collapse of extending Helisoma growth cones in conditioned medium, including serotonin, myosin light chain kinase inhibitor, and phorbol ester. To study the cytoskeletal events contributing to collapse, we cultured Helisoma growth cones on polylysine in which lamellipodial collapse was prevented by substrate adhesion. We found that all three factors that induced collapse of extending growth cones also caused actin bundle loss in polylysine-attached growth cones without loss of actin meshwork. In addition, actin bundle loss correlated with specific filamentous actin redistribution away from the leading edge that is characteristic of repulsive factors. Finally, we provide direct evidence using time-lapse studies of extending growth cones that actin bundle loss paralleled collapse. Taken together, these results suggest that actin bundles could be a common cytoskeletal target of various collapsing factors, which may use different signaling pathways that converge to induce growth cone collapse.  相似文献   

11.
12.
Sensory neurons from chick embryos were cultured on substrata that support neurite growth, and were fixed and prepared for both cytochemical localization of actin and electron microscopic observation of actin filaments in whole-mounted specimens. Samples of cells were treated with the detergent Triton X-100 before, during, or after fixation with glutaraldehyde to determine the organization of actin in simpler preparations of extracted cytoskeletons. Antibodies to actin and a fluorescent derivative of phallacidin bound strongly to the leading margins of growth cones, but in neurites the binding of these markers for actin was very weak. This was true in all cases of Triton X- 100 treatment, even when cells were extracted for 4 min before fixation. In whole-mounted cytoskeletons there were bundles and networks of 6-7-nm filaments in leading edges of growth cones but very few 6-7-n filaments were present among the microtubules and neurofilaments in the cytoskeletons of neurites. These filaments, which are prominent in growth cones, were identified as actin because they were stabilized against detergent extraction by the presence of phallacidin or the heavy meromyosin and S1 fragments of myosin. In addition, heavy meromyosin and S1 decorated these filaments as expected for binding to F-actin. Microtubules extended into growth cone margins and terminated within the network of actin filaments and bundles. Interactions between microtubule ends and these actin filaments may account for the frequently observed alignment of microtubules with filopodia at the growth cone margins.  相似文献   

13.
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.  相似文献   

14.
In the fundamental process of neuronal path-finding, a growth cone at the tip of every neurite detects and follows multiple guidance cues regulating outgrowth and initiating directional changes. While the main focus of research lies on the cytoskeletal dynamics underlying growth cone advancement, we investigated collapse and retraction mechanisms in NG108-15 growth cones transiently transfected with mCherry-LifeAct and pCS2+/EMTB-3XGFP for filamentous actin and microtubules, respectively. Using fluorescence time lapse microscopy we could identify two distinct modes of growth cone collapse leading either to neurite retraction or to a controlled halt of neurite extension. In the latter case, lateral movement and folding of actin bundles (filopodia) confine microtubule extension and limit microtubule-based expansion processes without the necessity of a constantly engaged actin turnover machinery. We term this previously unreported second type fold collapse and suggest that it marks an intermediate-term mode of growth regulation closing the gap between full retraction and small scale fluctuations.  相似文献   

15.
The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.  相似文献   

16.
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement. Here, we report that local and specific disruption of actin bundles from the growth cone peripheral domain induced repulsive growth cone turning. Meanwhile, dynamic microtubules within the peripheral domain were oriented into areas where actin bundles remained and were lost from areas where actin bundles disappeared. This resulted in directional microtubule extension leading to axon bending and growth cone turning. In addition, this local actin bundle loss coincided with localized growth cone collapse, as well as asymmetrical lamellipodial protrusion. Our results provide direct evidence, for the first time, that regional actin bundle reorganization can steer the growth cone by coordinating actin reorganization with microtubule dynamics. This suggests that actin bundles can be potential targets of signaling pathways downstream of guidance cues, providing a mechanism for coupling changes in leading edge actin with microtubules at the central domain during turning.  相似文献   

17.
Post‐translational modifications (PTMs) of α/β‐tubulin are believed to regulate interactions with microtubule‐binding proteins. A well‐characterized PTM involves in the removal and re‐ligation of the C‐terminal tyrosine on α‐tubulin, but the purpose of this tyrosination–detyrosination cycle remains elusive. Here, we examined the processive motility of mammalian dynein complexed with dynactin and BicD2 (DDB) on tyrosinated versus detyrosinated microtubules. Motility was decreased ~fourfold on detyrosinated microtubules, constituting the largest effect of a tubulin PTM on motor function observed to date. This preference is mediated by dynactin's microtubule‐binding p150 subunit rather than dynein itself. Interestingly, on a bipartite microtubule consisting of tyrosinated and detyrosinated segments, DDB molecules that initiated movement on tyrosinated tubulin continued moving into the segment composed of detyrosinated tubulin. This result indicates that the α‐tubulin tyrosine facilitates initial motor–tubulin encounters, but is not needed for subsequent motility. Our results reveal a strong effect of the C‐terminal α‐tubulin tyrosine on dynein–dynactin motility and suggest that the tubulin tyrosination cycle could modulate the initiation of dynein‐driven motility in cells.  相似文献   

18.
We have examined the distribution of acetylated alpha-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meninges. Meningeal fibroblasts showed heterogeneous staining patterns with a monoclonal antibody against acetylated alpha-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-alpha-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated alpha-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated alpha-tubulin, it was found that acetylated alpha-tubulin and tyrosinated alpha-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated alpha-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated alpha-tubulin and was cold stable, and the other contained tyrosinated alpha-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of alpha-tubulin are involved in the specification of stable microtubules.  相似文献   

19.
The authors describe a cell-based assay for anti-microtubule compounds suitable for automation. This assay allows the identification, in a single screening campaign, of both microtubule-destabilizing and microtubule-stabilizing agents. Its rationale is based on the substrate properties of the tubulin-modifying enzymes involved in the tubulin tyrosination cycle. This cycle involves the removal of the C-terminal tyrosine of the tubulin alpha-subunit by an ill-defined tubulin carboxypeptidase and its readdition by tubulin tyrosine ligase. Because of the substrate properties of these enzymes, dynamic microtubules, sensitive to depolymerizing drugs, are composed of tyrosinated tubulin, whereas non-dynamic, stabilized microtubules are composed of detyrosinated tubulin. Thus depolymerization or stabilization of the microtubule network can easily be detected with double-immunofluorescence staining using antibodies specific to tyrosinated and detyrosinated tubulin. The authors have scaled this assay to the 96-well plate format and adapted its process for an automated handling, including a readout using a microplate reader. They describe the different steps of this adaptation. This assay was validated using known compounds. This new cell-based assay represents an alternative to both global cytotoxicity assays and in vitro tubulin assembly assays commonly used for the detection of microtubule poisons.  相似文献   

20.
Multinucleated giant cells (MNGC) derived from avian peripheral blood monocytes present a dense microtubular network emanating from peripherally located centrosomes. We were interested to study how microtubule and F-actin cytoskeletons cooperate in MNGC to maintain cell shape. Microtubule depolymerization by nocodazole triggered the reorganization of the F-actin cytoskeleton in MNGC that is normally organized into podosomes, cortical actin filaments and membrane ruffles. After nocodazole treatment, F-actin was redistributed into unusual transverse fibers associated with focal adhesion plaques. When microtubules were allowed to repolymerize after nocodazole removal, F-actin appeared transiently, together with the small GTPase Rac, in large membrane ruffles. Using affinity precipitation assays, we show that microtubule depolymerization leads to activation of Rho and inhibition of Rac, whereas microtubule repolymerization induces Rac activation and Rho inhibition. Thus, the level of microtubule polymerization inversely regulates Rho and Rac activity in MNGC. Moreover, using C3 exoenzyme, a known inhibitor of Rho, we demonstrate that both the F-actin fiber formation in response to microtubule depolymerization and the formation of membrane ruffles after microtubule repolymerization occur in C3-treated MNGC, indicating that Rho is not required for these events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号