共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of membrane-bound quinol molecules is a central step in the respiratory electron transport chains used by biological cells to generate ATP by oxidative phosphorylation. A novel family of cytochrome c quinol dehydrogenases that play an important role in bacterial respiratory chains was recognised in recent years. Here, we describe the first structure of a cytochrome from this family, NrfH from Desulfovibrio vulgaris, which forms a stable complex with its electron partner, the cytochrome c nitrite reductase NrfA. One NrfH molecule interacts with one NrfA dimer in an asymmetrical manner, forming a large membrane-bound complex with an overall alpha(4)beta(2) quaternary arrangement. The menaquinol-interacting NrfH haem is pentacoordinated, bound by a methionine from the CXXCHXM sequence, with an aspartate residue occupying the distal position. The NrfH haem that transfers electrons to NrfA has a lysine residue from the closest NrfA molecule as distal ligand. A likely menaquinol binding site, containing several conserved and essential residues, is identified. 相似文献
2.
Melanie Kern Florian Eisel Juliane Scheithauer Robert G. Kranz Jörg Simon 《Molecular microbiology》2010,75(1):122-137
Bacterial c -type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX2 CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c -type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX2 CK or CX2 CH). W. succinogenes CcsA2 was found to attach haem to standard CX2 CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX2 CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni . Different apo-cytochrome variants carrying the CX15 CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli . It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c -type cytochromes. 相似文献
3.
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1.In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate. 相似文献
4.
A direct hydrogen bond between ubiquinone/quinol bound at the QO site and a cluster-ligand histidine of the iron-sulfur protein (ISP) is described as a major determining factor explaining much experimental data on position of the ISP ectodomain, electron paramagnetic resonance (EPR) lineshape and midpoint potential of the iron-sulfur cluster, and the mechanism of the bifurcated electron transfer from ubiquinol to the high and low potential chains of the bc1 complex. 相似文献
5.
Resonance Raman scattering on the haem group of cytochrome c 总被引:2,自引:0,他引:2
H Brunner 《Biochemical and biophysical research communications》1973,51(4):888-894
Resonance Raman spectra of the haem group of 8 × 10?5 M horse heart ferro- and ferricytochrome c solutions have been obtained. The spectra are almost identical to that of haemoglobin. The frequency of the Raman line near 1370 cm?1, which in haemoglobin is sensitive to the position of the haem iron, indicates that the iron atom of cytochrome c lies in the plane of the porphyrin for both oxidation states. 相似文献
6.
Mapping of the cytochrome c binding site on cytochrome c oxidase 总被引:1,自引:0,他引:1
7.
The bacterial quinol oxidase, cytochrome o, is an enzyme which is highly analogous to the better known cytochrome c oxidase, cytochrome aa3, but with the important difference that it lacks the near infra-red absorbing pigment CuA. In this article we report an absorption band in the near IR spectrum of cytochrome o with a maximal absorption at 758 nm, and which is attributable to the ferrous high-spin haem. The 758 nm band has an extinction coefficient of 0.2-0.3 mM-1.cm-1 at 758-800 nm. This region in cytochrome aa3 is dominated by the CuA absorption. The 758 nm absorption is lost on addition of CO or cyanide to the reduced enzyme. The carbon monoxide compound of cytochrome o also has absorbance bands in the near infra-red, and these may be attributable to a low-spin ferrous haem compound. 相似文献
8.
9.
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation. 相似文献
10.
J Simon R Pisa T Stein R Eichler O Klimmek R Gross 《European journal of biochemistry》2001,268(22):5776-5782
The electron-transport chain that catalyzes nitrite respiration with formate in Wolinella succinogenes consists of formate dehydrogenase, menaquinone and the nitrite reductase complex. The latter catalyzes nitrite reduction by menaquinol and is made up of NrfA and NrfH, two c-type cytochromes. NrfA is the catalytic subunit; its crystal structure is known. NrfH belongs to the NapC/NirT family of membrane-bound c-type cytochromes and mediates electron transport between menaquinol and NrfA. It is demonstrated here by MALDI MS that four heme groups are attached to NrfH. A Delta nrfH deletion mutant of W. succinogenes was constructed by replacing the nrfH gene with a kanamycin-resistance gene cartridge. This mutant did not form the NrfA protein, probably because of a polar effect of the mutation on nrfA expression. The nrfHAIJ gene cluster was restored by integration of an nrfH-containing plasmid into the genome of the Delta nrfH mutant. The resulting strain had wild-type properties with respect to growth by nitrite respiration and nitrite reductase activity. A mutant (stopH) that contained the nrfHAIJ locus with nrfH modified by two artificial stop codons near its 5' end produced wild-type amounts of NrfA in the absence of the NrfH protein. NrfA was located exclusively in the soluble cell fraction of the stopH mutant, indicating that NrfH acts as the membrane anchor of the NrfHA complex in wild-type bacteria. The stopH mutant did not grow by nitrite respiration and did not catalyze nitrite reduction by formate, indicating that the electron transport is strictly dependent on NrfH. The NrfH protein seems to be an unusual member of the NapC/NirT family as it forms a stable complex with its redox partner protein NrfA. 相似文献
11.
J Stonehuerner P O'Brien L Geren F Millett J Steidl L Yu C A Yu 《The Journal of biological chemistry》1985,260(9):5392-5398
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c. 相似文献
12.
The cytochrome c nitrite reductase complex (NrfHA) is the terminal enzyme in the electron transport chain catalysing nitrite respiration of Wolinella succinogenes. The catalytic subunit NrfA is a pentahaem cytochrome c containing an active site haem group which is covalently bound via the cysteine residues of a unique CWTCK motif. The lysine residue serves as the axial ligand of the haem iron. The other four haem groups of NrfA are bound by conventional haem-binding motifs (CXXCH). The nrfHAIJ locus was restored on the genome of the W. succinogenes DeltanrfAIJ deletion mutant by integration of a plasmid, thus enabling the expression of modified alleles of nrfA and nrfI. A mutant (K134H) was constructed which contained a nrfA gene encoding a CWTCH motif instead of CWTCK. NrfA of strain K134H was found to be synthesized with five bound haem groups, as judged by matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry. Its nitrite reduction activity with reduced benzyl viologen was 40% of the wild-type activity. Ammonia was formed as the only product of nitrite reduction. The mutant did not grow by nitrite respiration and its electron transport activity from formate to nitrite was 5% of that of the wild-type strain. The predicted nrfI gene product is similar to proteins involved in system II cytochrome c biogenesis. A mutant of W. succinogenes (stopI) was constructed that contained a nrfHAIJ gene cluster with the nrfI codons 47 and 48 altered to stop codons. The NrfA protein of this mutant did not catalyse nitrite reduction and lacked the active site haem group, whereas the other four haem groups were present. Mutant (K134H/stopI) which contained the K134H modification in NrfA in addition to the inactivated nrfI gene had essentially the same properties as strain K134H. NrfA from strain K134H/stopI contained five haem groups. It is concluded that NrfI is involved in haem attachment to the CWTCK motif in NrfA but not to any of the CXXCH motifs. The nrfI gene is obviously dispensable for maturation of a modified NrfA protein containing a CWTCH motif instead of CWTCK. Therefore, NrfI might function as a specific haem lyase that recognizes the active site lysine residue of NrfA. A similar role has been proposed for NrfE, F and G of Escherichia coli, although these proteins share no overall sequence similarity to NrfI and belong to system I cytochrome c biogenesis, which differs fundamentally from system II. 相似文献
13.
14.
Thermophilic bacterium PS3 cultured under slightly air-limited conditions showed a mitochondrion-like cytochrome pattern similar to that in vigorously aerated cells, but an o-type cytochrome replaced cytochrome a3 as the CO-binding centre. Cytochrome cao-type oxidase was purified from the cell membranes by almost the same procedure as used for cytochrome caa3. The turnover number of cytochrome cao was higher than that of cytochrome caa3, but the Km's of the two enzymes for cytochrome c and O2 were almost the same. Gel electrophoresis in the presence of sodium dodecyl sulfate gave bands of four subunits at the identical positions both for cytochrome cao and cytochrome caa3. Cytochrome cao contained a novel kind of haem in addition to haems C and A. This novel haem is likely to be haem O, very recently found as the chromophore of the cytochrome bo complex in Escherichia coli. These data suggest that cytochrome cao is an alternative form of cytochrome c oxidase (cytochrome caa3), in which the cytochrome a3 centre of the enzyme is replaced with cytochrome o. 相似文献
15.
Pessanha M Brennan L Xavier AV Cuthbertson PM Reid GA Chapman SK Turner DL Salgueiro CA 《FEBS letters》2001,489(1):8-13
The tetrahaem cytochrome isolated during anaerobic growth of Shewanella frigidimarina NCIMB400 is a small protein (86 residues) involved in electron transfer to Fe(III), which can be used as a terminal respiratory oxidant by this bacterium. A 3D solution structure model of the reduced form of the cytochrome has been determined using NMR data in order to determine the relative orientation of the haems. The haem core architecture of S. frigidimarina tetrahaem cytochrome differs from that found in all small tetrahaem cytochromes c(3) so far isolated from strict anaerobes, but has some similarity to the N-terminal cytochrome domain of flavocytochrome c(3) isolated from the same bacterium. NMR signals obtained for the four haems of S. frigidimarina tetrahaem cytochrome at all stages of oxidation were cross-assigned to the solution structure using the complete network of chemical exchange connectivities. Thus, the order in which each haem in the structure becomes oxidised was determined. 相似文献
16.
Chemical modification of the haem propionate of cytochrome c. A re-evaluation of the reaction of cytochrome c with a water-soluble carbodi-imide. 下载免费PDF全文
Horse heart and tuna heart cytochromes c were treated with the water-soluble carbodi-imide 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide. When the reaction is followed spectroscopically two kinetic phases are apparent. Alteration of the reactivity of the proteins with such ligands as CO, however, occurs in a single phase identical with the faster phase detected spectroscopically. The modified proteins both show spectroscopic and redox properties identical with those described for the tuna heart cytochrome c derivative by Timkovich [Biochem. J. (1980) 185, 47-57]. The use of radiolabelled carbodi-imide identifies two or three sites of reactivity. However, the addition of glycine methyl ester to the reaction mixture leads to the addition of nine glycine moieties in the case of the horse protein and seven in the case of the tuna protein, indicating a larger number of reactive sites than previously reported. A further set of reaction sites was identified by peptide mapping of the modified proteins, and these sites take part in intramolecular reactions leading to internal cross-linking and the formation of an enzymically indigestible 'core particle'. The haem group was identified as a site of reaction with the carbodi-imide, and is as a consequence covalently linked to the peptide by a bond in addition to the thioether bonds normally present. In the light of these findings, the alterations in the properties of the tuna protein, subsequent to reaction with the carbodi-imide, which have been previously explained in structural terms, must be re-evaluated. This study also highlights the importance of internal cross-link formation, which can occur by intramolecular nucleophilic attack, a process that has often been overlooked by investigators employing carbodi-imide modification of carboxylate groups in proteins. 相似文献
17.
Hartshorne RS Kern M Meyer B Clarke TA Karas M Richardson DJ Simon J 《Molecular microbiology》2007,64(4):1049-1060
In bacterial c-type cytochromes, the haem cofactor is covalently attached via two cysteine residues organized in a haem c-binding motif. Here, a novel octa-haem c protein, MccA, is described that contains only seven conventional haem c-binding motifs (CXXCH), in addition to several single cysteine residues and a conserved CH signature. Mass spectrometric analysis of purified MccA from Wolinella succinogenes suggests that two of the single cysteine residues are actually part of an unprecedented CX15CH sequence involved in haem c binding. Spectroscopic characterization of MccA identified an unusual high-potential haem c with a red-shifted absorption maximum, not unlike that of certain eukaryotic cytochromes c that exceptionally bind haem via only one thioether bridge. A haem lyase gene was found to be specifically required for the maturation of MccA in W. succinogenes. Equivalent haem lyase-encoding genes belonging to either the bacterial cytochrome c biogenesis system I or II are present in the vicinity of every known mccA gene suggesting a dedicated cytochrome c maturation pathway. The results necessitate reconsideration of computer-based prediction of putative haem c-binding motifs in bacterial proteomes. 相似文献
18.
Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family 总被引:4,自引:0,他引:4
Analysis of cytochromes c (tuna), c2 (Rhodospirillum rubrum), c550 (Paracoccus denitrificans) and c551 (Pseudomonas aeruginosa) shows that they contain 48 residues identifiable as homologous from superposition of the structures. The other 34 to 64 residues are in loops that vary greatly in sequence, length and conformation, or in alpha-helices that are found in only some of the structures. Of the 48 homologous residues, 17 are in three segments which pack onto the haem faces. In all four structures, these segments have the same conformations, and the same locations relative to the haem. The other 31 residues are in three alpha-helices which are in contact with each other. These form the back and one side of the haem pocket. In cytochrome c551 the positions of the three alpha-helices have shifted and rotated, in comparison with cytochromes c and c2, by up to 5 A and 25 degrees relative to the haem. These shifts, facilitated by mutations at the helix-helix interfaces, are related to the reconstruction of the propionic acid side of the haem pocket described by Almassy & Dickerson (1978). Together these effects produce alternative structures for the haem pocket. This mechanism of adaptation to mutation contrasts with that observed in the globins. In the globins, mutations also produce changes in helix interfaces and shifts of packed helices, but in the globins these shifts are coupled to conserve the structure of the haem pocket. 相似文献
19.
Hallberg BM Bergfors T Bäckbro K Pettersson G Henriksson G Divne C 《Structure (London, England : 1993)》2000,8(1):79-88
BACKGROUND: The fungal oxidoreductase cellobiose dehydrogenase (CDH) degrades both lignin and cellulose, and is the only known extracellular flavocytochrome. This haemoflavoenzyme has a multidomain organisation with a b-type cytochrome domain linked to a large flavodehydrogenase domain. The two domains can be separated proteolytically to yield a functional cytochrome and a flavodehydrogenase. Here, we report the crystal structure of the cytochrome domain of CDH. RESULTS: The crystal structure of the b-type cytochrome domain of CDH from the wood-degrading fungus Phanerochaete chrysosporium has been determined at 1.9 A resolution using multiple isomorphous replacement including anomalous scattering information. Three models of the cytochrome have been refined: the in vitro prepared cytochrome in its redox-inactive state (pH 7.5) and redox-active state (pH 4.6), as well as the naturally occurring cytochrome fragment. CONCLUSIONS: The 190-residue long cytochrome domain of CDH folds as a beta sandwich with the topology of the antibody Fab V(H) domain. The haem iron is ligated by Met65 and His163, which confirms previous results from spectroscopic studies. This is only the second example of a b-type cytochrome with this ligation, the first being cytochrome b(562). The haem-propionate groups are surface exposed and, therefore, might play a role in the association between the cytochrome and flavoprotein domain, and in interdomain electron transfer. There are no large differences in overall structure of the cytochrome at redox-active pH as compared with the inactive form, which excludes the possibility that pH-dependent redox inactivation results from partial denaturation. From the electron-density map of the naturally occurring cytochrome, we conclude that it corresponds to the proteolytically prepared cytochrome domain. 相似文献
20.
Contribution of the FtsQ transmembrane segment to localization to the cell division site 总被引:1,自引:0,他引:1 下载免费PDF全文
Scheffers DJ Robichon C Haan GJ den Blaauwen T Koningstein G van Bloois E Beckwith J Luirink J 《Journal of bacteriology》2007,189(20):7273-7280
The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site. 相似文献