首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-glycerol 3-phosphate (L-G3P) was accumulated in Saccharomyces cerevisiae by pathway engineering. Intracellular concentration of this metabolic intermediate could be increased more than 20 times compared to the wild type by overexpressing GPD1 encoding the glycerol 3-phosphate dehydrogenase in a gpp1 Delta gpp2 Delta mutant which lacks both isoenzymes of glycerol 3-phosphatase. Investigation of cellular pattern of triacylglycerols and glycerophospholipids did not reveal considerable changes due to accumulation of their precursor L-G3P. Hyperosmotic stress did not affect the L-G3P pool in the gpp1 Delta gpp2 Delta mutant overexpressing GPD1 despite an about 4-fold increase of specific GPD activity. In contrast, oxygen limitation improved intracellular L-G3P concentration by enhancing the availability of cytosolic NADH. The reduction of pyruvate decarboxylase activity by deleting PDC2 led to an additional increase. In fact, the triple mutant gpp1 Delta gpp2 Delta pdc2 Delta overexpressing GPD1 accumulated 17 mg L-G3P/g dry weight during glucose batch fermentation under oxygen limitation. This value corresponds to an about 100-fold increase compared to that found in the wild type.  相似文献   

2.
Glycerol, one of the most important by-products of alcoholic fermentation, has positive effects on the sensory properties of fermented beverages. It was recently shown that the most direct approach for increasing glycerol formation is to overexpress GPD1, which encodes the glycerol-3-phosphate dehydrogenase (GPDH) isoform Gpd1p. We aimed to identify other steps in glycerol synthesis or transport that limit glycerol flux during glucose fermentation. We showed that the overexpression of GPD2, encoding the other isoform of glycerol-3-phosphate dehydrogenase (Gpd2p), is equally as effective as the overexpression of GPD1 in increasing glycerol production (3.3-fold increase compared to the wild-type strain) and has similar effects on yeast metabolism. In contrast, overexpression of GPP1, encoding glycerol 3-phosphatase (Gpp1p), did not enhance glycerol production. Strains that simultaneously overexpress GPD1 and GPP1 did not produce higher amounts of glycerol than a GPD1-overexpressing strain. These results demonstrate that GPDH, but not the glycerol 3-phosphatase, is rate-limiting for glycerol production. The channel protein Fps1p mediates glycerol export. It has recently been shown that mutants lacking a region in the N-terminal domain of Fps1p constitutively release glycerol. We showed that cells producing truncated Fps1p constructs during glucose fermentation compensate for glycerol loss by increasing glycerol production. Interestingly, the strain with a deregulated Fps1 glycerol channel had a different phenotype to the strain overexpressing GPD genes and showed poor growth during fermentation. Overexpression of GPD1 in this strain increased the amount of glycerol produced but led to a pronounced growth defect.  相似文献   

3.
Escherichia coli CAG2242 cells are deficient in the speG gene encoding spermidine acetyltransferase. When these cells were cultured in the presence of 0.5 to 4 mM spermidine, their viability was greatly decreased through the inhibition of protein synthesis by overaccumulation of spermidine. When the cells were cultured with a high concentration of spermidine (4 mM), a revertant strain was obtained. We found that a 55-kDa protein, glycerol kinase, was overexpressed in the revertant and that synthesis of a ribosome modulation factor and the RNA polymerase sigma(38) subunit, factors important for cell viability, was increased in the revertant. Levels of L-glycerol 3-phosphate also increased in the revertant. Transformation of glpFK, which encodes a glycerol diffusion facilitator (glpF) and glycerol kinase (glpK), to E. coli CAG2242 partially prevented the cell death caused by accumulation of spermidine. It was also found that L-glycerol 3-phosphate inhibited spermidine binding to ribosomes and attenuated the inhibition of protein synthesis caused by high concentrations of spermidine. These results indicate that L-glycerol 3-phosphate reduces the binding of excess amounts of spermidine to ribosomes so that protein synthesis is recovered.  相似文献   

4.
During the later stage of glycerol production by fermentation of Candida krusei, glycerol consumption by the strain was observed, although there was residual sugar in the medium. To enhance the final glycerol accumulation, a new fermentation strategy was developed by maintaining high activities of glycerol synthetic enzymes (i.e., glycerol-3-phosphate dehydrogenase (ctGPD) and glycerol-3-phosphatase (GPP)) for a relatively long period while conducting oxygen limitation at a later stage to inhibit the increase of another enzyme activity related to glycerol degradation (i.e., mitochondrial glycerol-3-phosphate dehydrogenase (mtGPD)). With oxygen limitation performed from 88 h, when ctGPD and GPP activities were already at a low level while mtGPD activity was increasing, the glycerol dissimilation was efficiently reduced. The final glycerol concentration reached 55.6 g/L, which was about 18% (96 h) and 30% (104 h) higher than control, and its productivity increased to 0.54 g/(L h). The proposed strategy based on cell physiology was proved useful to the glycerol fermentation process.  相似文献   

5.
Formation of glycerol as by-product of amino acid production by Corynebacterium glutamicum has been observed under certain conditions, but the enzyme(s) involved in its synthesis from glycerol-3-phosphate were not known. It was shown here that cg1700 encodes an enzyme active as a glycerol-3-phosphatase (GPP) hydrolyzing glycerol-3-phosphate to inorganic phosphate and glycerol. GPP was found to be active as a homodimer. The enzyme preferred conditions of neutral pH and requires Mg2? or Mn2? for its activity. GPP dephosphorylated both L- and D-glycerol-3-phosphate with a preference for the D-enantiomer. The maximal activity of GPP was estimated to be 31.1 and 1.7 U mg?1 with K(M) values of 3.8 and 2.9 mM for DL- and L-glycerol-3-phosphate, respectively. For physiological analysis a gpp deletion mutant was constructed and shown to lack the ability to produce detectable glycerol concentrations. Vice versa, gpp overexpression increased glycerol accumulation during growth in fructose minimal medium. It has been demonstrated previously that intracellular accumulation of glycerol-3-phosphate is growth inhibitory as shown for a recombinant C. glutamicum strain overproducing glycerokinase and glycerol facilitator genes from E. coli in media containing glycerol. In this strain, overexpression of gpp restored growth in the presence of glycerol as intracellular glycerol-3-phosphate concentrations were reduced to wild-type levels. In C. glutamicum wild type, GPP was shown to be involved in utilization of DL-glycerol-3-phosphate as source of phosphorus, since growth with DL-glycerol-3-phosphate as sole phosphorus source was reduced in the gpp deletion strain whereas it was accelerated upon gpp overexpression. As GPP homologues were found to be encoded in the genomes of many other bacteria, the gpp homologues of Escherichia coli (b2293) and Bacillus subtilis (BSU09240, BSU34970) as well as gpp1 from the plant Arabidosis thaliana were overexpressed in E. coli MG1655 and shown to significantly increase GPP activity.  相似文献   

6.
Triacylglycerol (TAG) is a microbial oil feedstock for biodiesel production that uses an inexpensive substrate, such as glycerol. Here, we demonstrated the overproduction of TAG from glycerol in engineered Saccharomyces cerevisiae via the glycerol‐3‐phosphate (G3P) pathway by overexpressing the major TAG synthesis. The G3P accumulation was increased 2.4‐fold with the increased glycerol utilization gained by the overexpression of glycerol kinase (GUT1). By overexpressing diacylglycerol acyltransferase (DGA1) and phospholipid diacylglycerol acyltransferase (LRO1), the engineered YPH499 (pGutDgaLro1) strain produced 23.0 mg/L lipids, whereas the YPH499 (pESC‐TRP) strain produced 6.2 mg/L total lipids and showed a lipid content that was increased 1.4‐fold compared with 3.6% for the wild‐type strain after 96 h of cultivation. After 96 h of cultivation using glycerol, the overall content of TAG in the engineered strain, YPH499 (pGutDgaLro1), yielded 8.2% TAG, representing a 2.3‐fold improvement, compared with 3.6% for the wild‐type strain. The results should allow a reduction of costs and a more sustainable production of biodiesel. Biotechnol. Bioeng. 2013; 110: 343–347. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Phosphatidyl glycerol is present in lamellar bodies and in the material obtained by alveolar wash representing 12.3 and 11.5%, respectively, of the total phospholipid phosphorus. Lung microsomes catalyze the formation of phosphatidyl glycerol from the known precursors, L-glycerol 3-phosphate and CDP-diglyceride. The rate of [14C]L-glycerol 3-phosphate incorporation into phosphatidyl glycerol was 30% higher in microsomes as compared to mitochondria. The addition of mercuric chloride inhibited the synthesis of phosphatidyl glycerol, and stimulated the incorporation into another as yet incompletely identified lipid. After pulse labeling of microsomal phosphatidyl glycerol in vitro, further incubation of microsomes with lamellar bodies or alveolar wash resulted in nearly quantitative appearance of label in surfactant.  相似文献   

8.
A novel Candida glycerinogenes mutant, which possesses high glycerol productivity in a high phosphate concentration medium, was obtained by mutagenesis of an industrial glycerol producer. The mutant accumulated a total biomass of 11.5 g l−1, which is less than the 15 g l−1of the wild-type strain, but it consumed glucose faster than the wild-type strain did. The mutant reached its maximal glycerol concentration of 129 g l−1 in 84 h compared to 96 h for the wild-type strain. High cytoplasmic glycerol-3-phosphate dehydrogenase activity of the mutant in the early glycerol formation phase, leading to a rapid glycerol synthesis and accumulation, may be the main reason for the short fermentation process.  相似文献   

9.
Biosynthesis of phosphatidyl glycerophosphate in Escherichia coli   总被引:23,自引:0,他引:23  
An enzyme (L-glycerol 3-phosphate: CMP phosphatidyltransferase) catalyzing the synthesis of phosphatidyl glycerophosphate from CDP-diglyceride and L-glycerol 3-phosphate has been rendered soluble by treatment of the particulate, membrane-containing fraction of E. coli with Triton X-100 and has been partially purified. The enzyme, devoid of phosphatidyl glycerophosphatase activity, is specific for L-glycerol 3-phosphate and is completely dependent upon added Mg(++) or Mn(++) for activity. It has high affinity for CDP-diglyceride and can be used for the assay of this nucleotide. Other properties of the enzyme are also described.  相似文献   

10.
为进行高密度发酵并实现外源基因的高表达,在表型为MutS的重组毕赤酵母(Pichia pastoris)表达人血管生长抑制素的诱导阶段,采用了甘油甲醇混合补料的培养方式。以溶氧水平作为甘油代谢指针来控制甘油限制性流加既可维持一定菌体生长,又不会发生发酵液中残余甘油及有害代谢产物(乙醇)阻遏蛋白表达。当表达阶段的菌体平均比生长速率控制于0.012h-1,菌体浓度达150 g/L,血管生长抑制素浓度最高达到108 mg/L,血管生长抑制素的平均比生产速率为0.02 mg/(g·h),菌体关于甘油的表观得率为0.69 g/g,菌体关于甲醇的表观得率为0.93g/g,较没有采用甘油限制性流加时都有所提高。  相似文献   

11.
Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.  相似文献   

12.
Glucosamine-6-phosphate (GlcN6P) deaminase seems to be the main enzyme in Aspergillus niger cells responsible for rapid glucosamine accumulation during the early stages of growth in a high-citric-acid-yielding medium. By determining basic kinetic parameters on the isolated enzyme, a high affinity toward fructose-6-phosphate (Fru6P) was measured, while in the reverse direction the K m value for glucosamine-6-phosphate was lower than deaminases from other organisms measured so far. The enzyme characteristics of GlcN6P deaminase suggest it must compete with 6-phosphofructo-1-kinase (PFK1) for the common substrate—Fru6P in A. niger cells. Glucosamine accumulation seems therefore to remove an intermediate from the glycolytic flux, a situation which is reflected in slower citric acid accumulation and a specific growth rate after the germination of spores. When ammonium ions are depleted from the medium, one of the substrates for GlcN6P deaminase becomes limiting and Fru6P can be catabolised by PFK1 which enhances glycolytic flux. Other enzymatic features of GlcN6P deaminase such as pH optima for both aminating and deaminating reactions might play a significant role in rapid glucosamine accumulation during the early phase of fermentation and a slow consumption of aminosugar during the citric-acid-producing phase.  相似文献   

13.
Glucose and xylulose fermentation and product formation by Saccharomyces cerevisiae were compared in batch culture under anaerobic conditions. In both cases the main product was ethanol, with glycerol, xylitol, and arabitol produced as by-products. During glucose and xylulose fermentation, 0.74 and 0.37 g of cell mass liter−1, respectively, were formed. In glucose-fermenting cells, the carbon balance could be closed, whereas in xylulose-fermenting cells, about 25% of the consumed sugar carbon could not be accounted for. The rate of sugar consumption was 3.94 mmol g of initial biomass−1 h−1 for glucose and 0.39 mmol g of initial biomass−1 h−1 for xylulose. Concentrations of the intermediary metabolites fructose-1,6-diphosphate (FDP), pyruvate (PYR), sedoheptulose 7-phosphate (S7P), erytrose 4-phosphate, citrate (CIT), fumarate, and malate were compared for both types of cells. Levels of FDP, PYR, and CIT were lower, and levels of S7P were higher in xylulose-fermenting cells. After normalization to the carbon consumption rate, the levels of FDP were approximately the same, whereas there was a significant accumulation of S7P, PYR, CIT, and malate, especially of S7P, in xylulose-fermenting cells compared with in glucose-fermenting cells. In the presence of 15 μM iodoacetate, an inhibitor of the enzyme glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), FDP levels increased and S7P levels decreased in xylulose-assimilating cells compared with in the absence of the inhibitor, whereas fermentation was slightly slowed down. The specific activity of transaldolase (EC 2.2.1.2), the pentose phosphate pathway enzyme reacting with S7P and glyceraldehyde-3-phosphate, was essentially the same for both glucose- and xylulose-fermenting cells. It was, however, several orders of magnitude lower than that reported for a Torula yeast and Candida utilis. The presence of iodoacetate did not influence the activity of transaldolase in xylulose-fermenting cells. The results are discussed in terms of a competition between the pentose phosphate pathway and glycolysis for the common metabolite, glyceraldehyde-3-phosphate, which would explain the low rates of xylulose assimilation and ethanol production from xylulose by S. cerevisiae.  相似文献   

14.
甘油是一种极其理想的耐高渗透压介质。利用PCR方法,从产甘油假丝酵母WL2002-5中扩增出了2个产甘油的关键酶基因GPD和GPP,分别编码3-磷酸甘油脱氢酶(glycerol 3-phosphate dehydrogenase, GPD)和3-磷酸甘油磷酸酶(glycerol 3-phosphate phosphatase, GPP)。利用T-Vector在Escherichia coli JM109中克隆得到大量的GPD和GPP基因,并成功构建了重组质粒pYX212-GPD和pYX212-GPP;通过LiAc转化法将重组质粒导入酿酒酵母Saccharomyces cerevisiae W303-1A。初步实验结果表明:发酵过程中pYX212-GPD/S. cerevisiae W303-1A的生物量高于pYX212-GPP/S. cerevisiae W303-1A和野生型S. cerevisiae W303-1A;发酵72h后,pYX212 GPD/S. cerevisiae W303-1A发酵液中甘油含量大约为12mmol/L,明显高于野生型S. cerevisiae W303-1A的甘油含量,而pYX212-GPP/S. cerevisiae W303-1A与野生型S. cerevisiae W303-1A在甘油含量上相差不大,均只有4mmol/L 左右。  相似文献   

15.
The kinetics of glycerol uptake by the perfused rat liver were determined according to a model which includes membrane transport, intracellular phosphorylation and competitive inhibition of glycerol phosphorylation by L-glycerol 3-phosphate. The membrane transport obeys first-order kinetics at concentrations below 10 mM in the affluent medium. The K-m of the glycerol phosphorylation was 10 muM and the K-i of the L-glycerol 3-phosphate inhibition was 50 muM. The maximum activity (V) was 3.70 mumoles/min per g liver wet wt. These results are similar to in vitro kinetics of the glycerol kinase, except that K-i was found to be somewhat lower in the intact organ. At low glycerol concentrations, a steep concentration gradient exists across the liver cell membrane. The increase in the lactate to pyruvate concentration ratio during glycerol metabolism is related to the actual concentration of L-glycerol 3-phosphate, not to the rate of glycerol uptake.  相似文献   

16.
17.
1. Age-related changes in the specific activity of palmitoyl-CoA synthetase, sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15) and the esterification of [3H]palmitate into endogenous lipid in the microsomal fraction from rabbit brain have been determined throughout development. 2. The increased specific activity of sn-glycerol 3-phosphate acyltransferase at the onset of myelination (rising in parallel with other lipogenic enzymes) is consistent with a direct role of the acyltransferase in promoting the accumulation of cerebral lipid. In adult brain microsomes, although the specific activity was low, the total activity was only 20% lower than during active myelination. 3. Palmitoyl-CoA, synthesized by the palmitoyl-CoA synthetase in the microsomal membrane, was the preferred substrate for the esterification of sn-glycerol 3-phosphate. There was no evidence for a pool of palmitoyl-CoA formed from palmitate. 4. The esterification of [3H]palmitate into membrane-bound lipid remained high throughout development and may be part of an acyl-exchange cycle via lysophospholipids. [3H]palmitate was incorporated into both neutral lipids and phospholipids, while phosphatidic acid was the major product of sn-[1(3)-3H]-glycerol-3-phosphate esterification. 5. The microsomal fraction contained a pool of unesterified fatty acid, which was activated and esterified into sn-glycerol 3-phosphate.  相似文献   

18.
An oxygen limitation strategy based on dynamic enzyme activity was applied to improve glycerol accumulation and decrease the residual sugar level in a fermentation of Candida krusei in a bioreactor. By applying oxygen limitation at 88 h when the activities of two glycerol synthetic enzymes cytosolic glycerol-3-phosphate dehydrogenase (ctGPD) and glycerol-3-phosphatase (GPP) were low and the activity of mitochondrial glycerol-3-phosphate dehydrogenase (mtGPD) which catalyzes the glycerol dissimilation was high, the glycerol dissimilation was efficiently reduced. The final glycerol concentration reached 51.8 g l−1 at 96 h and 54.9 g l−1 at 116 h, which was 18 and 60% higher than the control (without oxygen limitation), respectively. The residual sugar was consumed completely while it was 11.2 g l−1 at the end of fermentation in the control. Under oxygen limitation, ethanol production was detected at a final concentration of 3.6 g l−1. This work suggests a metabolic flux shift by oxygen limitation in the bioreactor.  相似文献   

19.
20.
The metabolic and enzymatic bases for growth tolerance to ethanol (4%) and H2 (2 atm [1 atm = 101.29 kPa]) fermentation products in Clostridium thermohydrosulfuricum were compared in a sensitive wild-type strain and an insensitive alcohol-adapted strain. In the wild-type strain, ethanol (4%) and H2 (2 atm) inhibited glucose but not pyruvate fermentation parameters (growth and end product formation). Inhibition of glucose fermentation by ethanol (4%) in the wild-type strain was reversed by addition of acetone (1%), which lowered H2 and ethanol production while increasing isopropanol and acetate production. Pulsing cells grown in continuous culture on glucose with 5% ethanol or 1 atm of H2 significantly raised the NADH/NAD ratio in the wild-type strain but not in the alcohol-adapted strain. Analysis of key oxidoreductases demonstrated that the alcohol-adapted strain lacked detectable levels of reduced ferredoxin-linked NAD reductase and NAD-linked alcohol dehydrogenase activities which were present in the wild-type strain. Differences in the glucose fermentation product ratios of the two strains were related to differences in lactate dehydrogenase and hydrogenase levels and sensitivity of glyceraldehyde 3-phosphate dehydrogenase activity to NADH inhibition. A biochemical model is proposed which describes a common enzymatic mechanism for growth tolerance of thermoanaerobes to moderate concentrations of both ethanol and hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号