首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ke H  Zhang S  Li J  Howlett GJ  Wang CC 《Biochemistry》2006,45(50):15100-15110
The homodimeric protein DsbC is a disulfide isomerase and a chaperone located in the periplasm of Escherichia coli. We have studied the guanidine hydrochloride (GdnHCl)-induced unfolding and refolding of DsbC using mutagenesis, intrinsic fluorescence, circular dichroism spectra, size-exclusion chromatography, and sedimentation velocity analysis. The equilibrium refolding and unfolding of DsbC was thermodynamically reversible. The equilibrium folding profile measured by fluorescence excited at 280 nm exhibited a three-state transition profile with a stable folding intermediate formed at 0-2.0 M GdnHCl followed by a second transition at higher GdnHCl concentrations. Sedimentation velocity data revealed dissociation of the dimer to the monomer over the concentration range of the first transition (0-2.0 M). In contrast, fluorescence emission data for DsbC excited at 295 nm showed a single two-state transition. Fluorescence emission data for the equilibrium unfolding of the monomeric G49R mutant, excited at either 295 or 280 nm, indicated a single two-state transition. Data obtained for the dimeric Y52W mutant indicated a strong protein concentration dependence of the first transition but no dependence of the second transition in equilibrium unfolding. This suggests that the fluorescence of Y52W sensitively reports conformational changes caused by dissociation of the dimer. Thus, the folding of DsbC follows a three-state transition model with a monomeric folding intermediate formed in 0-2.0 M GdnHCl. The folding of DsbC in the presence of DTT indicates an important role for the non-active site disulfide bond in stabilizing the conformation of the molecule. Dimerization ensures the performance of chaperone and isomerase functions of DsbC.  相似文献   

2.
Guanidine hydrochloride (GdnHCl)-induced unfolding of human prostatic acid phosphatase (hPAP), a homodimer of 50 kDa subunit molecular weight, was investigated with activity measurements, size exclusion HPLC, tryptophan fluorescence, 1-anilinonaphtalene-8-sulfonate (ANS) binding and reactivity with 2-(4'-maleimidoanilino)naphthalene-6-sulfonate (MIANS). Equilibrium analysis was performed to shed light on the role of dimerization in the folding and stability of the catalytically active oligomeric protein. Unfolding was reversible, as verified by activity measurements and tryptophan fluorescence. The noncoincidence of the unfolding curves obtained by different techniques suggests the occurrence of a multiphasic process.The reaction of hPAP inactivation is accompanied by dissociation of the dimer into two monomers. The midpoint of this transition is at 0.65 M GdnHCl with 4.24+/-0.12 kcalmol(-1) free energy change. Binding of ANS to the inactive phosphatase monomer, especially remarkable in the region from 0.8 to 1.25M GdnHCl, suggests that the hydrophobic probe indicates exposition of the intersubunit hydrophobic surface and a loosening of the monomer's tertiary structure. Strong fluorescence of thiol group derivatives, the products of their reaction with MIANS, appears in a limited range of GdnHCl concentrations (1.2-1.6M). This shows that in the relaxed structure of the intermediate, the reagent is allowed to penetrate into the hydrophobic environment of the partially hidden thiol groups.The equilibrium unfolding reaction of hPAP, as monitored by tryptophan fluorescence, does not depend on the protein concentration and displays a single transition curve with a midpoint at 1.7 M GdnHCl and value of DeltaG(unf)(H(2)O)=3.38+/-0.08 kcalmol(-1) per monomer, a result implying that this transition is related to the conformational change of the earlier dissociated and already inactive subunit of the protein.  相似文献   

3.
Baez M  Cabrera R  Guixé V  Babul J 《Biochemistry》2007,46(20):6141-6148
Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.  相似文献   

4.
Triosephosphate isomerase (TIM) is a dimeric enzyme formed by two identical (beta/alpha)8 barrels. In this work, we compare the unfolding and refolding of the TIMs from Entamoeba histolytica (EhTIM) and baker's yeast (yTIM). A monomeric intermediate was detected in the GdnHCl-induced unfolding of EhTIM. The thermodynamic, spectroscopic, catalytic, and hydrodynamic properties of this intermediate were found to be very similar to those previously described for a monomeric intermediate of yTIM observed in GdnHCl. Monomer unfolding was reversible for both TIMs; however, the dissociation step was reversible in yTIM and irreversible in EhTIM. Monomer unfolding induced by high pressure in the presence of GdnHCl was a reversible process. DeltaGUnf, DeltaVUnf, and P1/2 were obtained for the 0.7-1.2 M GdnHCl range. The linear extrapolation of these thermodynamic parameters to the absence of denaturant showed the same values for both intermediates. The DeltaVUnfH2O values calculated for EhTIM and yTIM monomeric intermediates are the same within experimental error (-57 +/- 10 and -76 +/- 14 mL/mol, respectively). These DeltaVUnf H2O values are smaller than those reported for the unfolding of monomeric proteins of similar size, suggesting that TIM intermediates are only partially hydrated. |DeltaVUnf| increased with denaturant concentration; this behavior is probably related to structural changes in the unfolded state induced by GdnHCl and pressure. From the thermodynamic parameters that were obtained, it is predicted that in the absence of denaturants, pressure would induce monomer unfolding (P1/2 approximately 140 MPa) prior to dimer dissociation (P1/2 approximately 580 MPa). Therefore, dimerization prevents the pressure unfolding of the monomer.  相似文献   

5.
One of the most remarkable characteristics of Brucella lumazine synthase (BLS) is its versatility to undergo reversible dissociation and reassociation as a polymeric scaffold. We have proposed a mechanism of dissociation and unfolding of BLS. Using static light scattering (SLS) analysis, we were able to demonstrate that the decameric assembly dissociates into two different conditions [pH 5 or 2M guanidinium chloride (GdnHCl) pH 7] forming stable folded pentamers. The transition from folded pentamers to unfolded monomers by GdnHCl denaturation is highly cooperative and can be measured by different spectroscopic techniques. In this work, we show the successful insertion of an intrinsic probe to study in more detail the equilibria described in previous publications. For that purpose, we performed single-point mutations of Phe residues 121 and 127, located at the pentamer-pentamer and monomer-monomer interface, respectively, to Trp residues. These mutations produced only a marginal perturbation of the BLS structure. We analyzed the unfolding and stability of the mutants through different techniques: far-and near-UV CD, SLS, dynamic light scattering, and fluorescence spectroscopy. The introduced intrinsic probe could be used to gain insights into the detailed folding and assembly mechanism of this protein.  相似文献   

6.
The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.  相似文献   

7.
Khan MK  Miller AL  Bowler BE 《Biochemistry》2012,51(17):3586-3595
We use a host-guest approach to evaluate the effect of Trp guest residues relative to Ala on the kinetics and thermodynamics of formation of His-heme loops in the denatured state of iso-1-cytochrome c at 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). Trp guest residues are inserted into an alanine-rich segment placed after a unique His near the N-terminus of iso-1-cytochrome c. Trp guest residues are either 4 or 10 residues from the His end of the 28-residue loop. We find the guest Trp stabilizes the His-heme loop at all GdnHCl concentrations when it is the 4th, but not the 10th, residue from the His end of the loop. Thus, residues near loop ends are most important in developing topological constraints in the denatured state that affect protein folding. In 1.5 M GdnHCl, the loop stabilization is ~0.7 kcal/mol, providing a thermodynamic rationale for the observation that Trp often mediates residual structure in the denatured state. Measurement of loop breakage rate constants, k(b,His), indicates that loop stabilization by the Trp guest residues occurs completely after the transition state for loop formation in 6.0 M GdnHCl. Under poorer solvent conditions, approximately half of the stabilization of the loop develops in the transition state, consistent with contacts in the denatured state being energetically downhill and providing evidence for funneling even near the rim of the folding funnel.  相似文献   

8.
Equilibrium studies of guanidine hydrochloride (GdnHCl)-induced unfolding of dimeric arginine kinase (AK) from sea cucumber have been performed by monitoring by enzyme activity, intrinsic protein fluorescence, circular dichroism (CD), 1-anilinonaphthalene-8sulfonate (ANS) binding, size-exclusion chromatography and glutaraldehyde cross-linking. The unfolding is a multiphasic process involving at least two dimeric intermediates. The first intermediate, I1, which exists at 0-0.4 M GdnHCl, is a compact inactive dimer lacking partial global structure, while the second dimeric intermediate, I2, formed at 0.5-2.0 M GdnHCl, possesses characteristics similar to the globular folding intermediates described in the literature. The whole unfolding process can be described as follows: (1) inactivation and the appearance of the dimeric intermediate I1; (2) sudden unwinding of I1 to another dimeric intermediate, I2; (3) dissociation of dimeric intermediate I2 to monomers U. The refolding processes initiated by rapid dilution in renaturation buffers indicate that denaturation at low GdnHCl concentrations (below 0.4 M GdnHCl) is reversible and that there seems to be an energy barrier between the two intermediates (0.4-0.5 M GdnHCl), which makes it difficult for AK denatured at high GdnHCl concentrations (above 0.5 M) to reconstitute and regain its catalytic activity completely.  相似文献   

9.
Comparative structural studies on proteins derived from organisms with growth optima ranging from 15 to 100 degrees C are beginning to shed light on the mechanisms of protein thermoadaptation. One means of sustaining hyperthermostability is for proteins to exist in higher oligomeric forms than their mesophilic homologues. Triosephosphate isomerase (TIM) is one of the most studied enzymes, whose fold represents one of nature's most common protein architectures. Most TIMs are dimers of approximately 250 amino acid residues per monomer. Here, we report the 2.7 A resolution crystal structure of the extremely thermostable TIM from Pyrococcus woesei, a hyperthermophilic archaeon growing optimally at 100 degrees C, representing the first archaeal TIM structure. P. woesei TIM exists as a tetramer comprising monomers of only 228 amino acid residues. Structural comparisons with other less thermostable TIMs show that although the central beta-barrel is largely conserved, severe pruning of several helices and truncation of some loops give rise to a much more compact monomer in the small hyperthermophilic TIM. The classical TIM dimer formation is conserved in P. woesei TIM. The extreme thermostability of PwTIM appears to be achieved by the creation of a compact tetramer where two classical TIM dimers interact via an extensive hydrophobic interface. The tetramer is formed through largely hydrophobic interactions between some of the pruned helical regions. The equivalent helical regions in less thermostable dimeric TIMs represent regions of high average temperature factor. The PwTIM seems to have removed these regions of potential instability in the formation of the tetramer. This study of PwTIM provides further support for the role of higher oligomerisation states in extreme thermal stabilisation.  相似文献   

10.
Urea and guanidine-hydrochloride (GdnHCl) are frequently used for protein denaturation in order to determine the Gibbs free energy of folding and kinetic folding/unfolding parameters. Constant pH value is applied in the folding/unfolding experiments at different denaturant concentrations and steady protonation state of titratable groups is assumed in the folded and unfolded protein, respectively. The apparent side-chain pKa values of Asp, Glu, His and Lys in the absence and presence of 6 M urea and GdnHCl, respectively, have been determined by 1H-NMR. pKa values of all four residues are up-shifted by 0.3-0.5 pH units in presence of 6 M urea by comparison with pKa values of the residues dissolved in water. In the presence of 6 M GdnHCl, pKa values are down-shifted by 0.2-0.3 pH units in the case of acidic and up-shifted by 0.3-0.5 pH units in the case of basic residues. Shifted pKa values in the presence of denaturant may have a pronounced effect on the outcome of the protein stability obtained from denaturant unfolding experiments.  相似文献   

11.
We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.  相似文献   

12.
13.
The intrinsic polymer properties of glycine-rich sequences are evaluated with a set of iso-1-cytochrome c variants with N-terminal inserts of the sequence (GGGGGK)(n) for n = 1-5. The thermodynamics and kinetics of His-heme loop formation are measured as a function of guanidine hydrochloride (GdnHCl) concentration for loop sizes ranging from 22 to 46 residues. The scaling exponent for loop formation, ν(3), evaluated using the Jacobson-Stockmayer equation is near 1.8, at 1.5 and 3.0 M GdnHCl, but it increases to 2.2 in 6.0 M GdnHCl. Previous work on a set of iso-1-cytochrome c variants with (AAAAAK)(n) inserts gave ν(3) = 2.2 for alanine-rich sequences in both 3.0 and 6.0 M GdnHCl. Chain stiffness was evaluated from the relative magnitude of Flory's characteristic ratio, C(n), for alanine-rich versus glycine-rich sequences. In 3.0 M GdnHCl, C(n)(Ala)/C(n)(Gly) is 1.6, decreasing to 1.3 in 6.0 M GdnHCl. The data suggest that solvent-backbone interactions dominate polypeptide conformational properties under good solvent conditions whereas side-chain-dependent properties are more important under poor solvent conditions. The results provide a direct experimental assessment in terms of polymer properties of the distinct roles of Gly versus Ala in the folding code.  相似文献   

14.
Moreau VH  Rietveld AW  Ferreira ST 《Biochemistry》2003,42(50):14831-14837
Subunit dissociation of dimeric rabbit muscle triosephosphate isomerase (TIM) by hydrostatic pressure has previously been shown not to follow the expected dependence on protein concentration [Rietveld and Ferreira (1996) Biochemistry 35, 7743-7751]. This anomalous behavior was attributed to persistent conformational heterogeneity (i.e., the coexistence of long-lived conformational isomers) in the ensemble of TIM dimers. Here, we initially show that subunit dissociation/unfolding of TIM by guanidine hydrochloride (GdnHCl) also exhibits an anomalous dependence on protein concentration. Dissociation/unfolding of TIM by GdnHCl was investigated by intrinsic fluorescence and circular dichroism spectroscopies and was found to be a highly cooperative transition in which the tertiary and secondary structures of the protein were concomitantly lost. A procedure based on size-exclusion chromatography in the presence of intermediate (0.6 M) GdnHCl concentrations was developed to isolate two conformational isomers of TIM that exhibit significantly different stabilities and kinetics of unfolding by GdnHCl. Complete unfolding of the two isolated conformers at a high GdnHCl concentration (1.5 M), followed by refolding by removal of the denaturant, completely abolished the differences in their unfolding kinetics. These results indicate that such differences stem from conformational heterogeneity of TIM and are not related to any chemical modification of the protein. Furthermore, they add support to the notion that long-lived conformational isomers of TIM coexist in solution and provide a basis for the interpretation of the persistent heterogeneity of this protein.  相似文献   

15.
The equilibrium unfolding of dimeric yeast glutathione reductase (GR) by guanidine hydrochloride (GdnHCl) was investigated. Unfolding was monitored by a variety of techniques, including intrinsic fluorescence emission, anisotropy and iodide quenching measurements, far-ultraviolet circular dichroism and thiol reactivity measurements. At 1 M GdnHCl, one thiol group of GR became accessible to modification with 5,5′-dithiobis-(2-nitrobenzoic) acid (DTNB), whereas no changes could be detected in the spectroscopic properties (fluorescence, circular dichroism) of the protein. Between 2 and 3 M GdnHCl, two partially folded intermediate states possessing flexible tertiary structures (revealed by fluorescence data) but compact secondary structures (as indicated by circular dichroism measurements) were identified. The quaternary structure of GR in the presence of GdnHCl was also investigated by size-exclusion liquid chromatography. These results indicated the presence of an expanded predissociated dimer at 2.5 M GdnHCl and partially folded monomers at 3 M GdnHCl. Taken together, these results suggest the existence of two molten-globule-like intermediate species (one dimeric and one monomeric) in the unfolding of GR. The results are discussed in terms of the mechanism of GR folding and dimerization.  相似文献   

16.
The energetic parameters for the folding of small globular proteins can be very different if derived from guanidine hydrochloride (GdnHCl) or urea denaturation experiments. A study of the equilibrium and kinetics of the refolding of wild-type (wt) cytochrome c(551) (cyt c(551)) from Pseudomonas aeruginosa and of two site-directed mutants (E70Q and E70V) shows that the nonionic nature of urea reveals the role of a salt bridge between residues E70 and K10 on the transition state, which is otherwise completely masked in GdnHCl experiments. Mixed denaturant refolding experiments allow us to conclude that the masking effect of GdnHCl is complete at fairly low GdnHCl concentrations ( congruent with 0.1 M). The fact that potassium chloride is unable to reproduce this quenching effect, together with the results obtained on the mutants, suggests a specific binding of the Gdn(+) cation, which involves the E70-K10 ion pair in wt cyt c(551).We propose, therefore, a simple kinetic test to obtain a mechanistic interpretation of nonlinear dependences of DeltaG(w) on GdnHCl concentration on the basis of kinetic refolding experiments in the presence of both denaturants.  相似文献   

17.
Equilibrium unfolding of a 69-kDa monomeric Escherichia coli maltodextrin glucosidase (MalZ) was studied using intrinsic and extrinsic fluorescence spectroscopy. The unfolding transition of MalZ followed a three-state process, involving the formation of a stable intermediate state having more exposed hydrophobic surface. It was found that the protein structure can be easily perturbed by low concentration of guanidium hydrochloride (GdnHCl) and, at a GdnHCl concentration of 2 M, MalZ was denatured completely. The active site of the protein also has been proved to be sensitive to a low concentration of GdnHCl since MalZ deactivated at 0.5 M GdnHCl completely. The surface hydrophobicity and ANS-binding site of the protein have been determined to be 150.7 and 0.24, respectively. Perhaps the formation of the stable unfolding intermediate, having higher surface hydrophobicity, may be one of the reasons for aggregation of MalZ and its recognition by chaperonin GroEL during the assisted folding pathway.  相似文献   

18.
The unfolding and attempted refolding of citrate synthase from pig heart   总被引:3,自引:0,他引:3  
The unfolding of the dimeric enzyme citrate synthase from pig heart in solutions of guanidinium chloride (GdnHCl) was studied. Data from fluorescence, circular dichroism (CD) and thiol group reactivity studies indicated that the enzyme was almost completely unfolded at GdnHCl concentrations greater than or equal to 4 M. On dilution of GdnHCl, essentially no reactivation of the enzyme occurred. The implications of this finding for the process of folding and assembly in vivo of this and other mitochondrial enzymes are discussed. Exposure of the enzyme to high pH (9-10) led to only a small loss of secondary structure and partial reactivation could be observed on readjustment of the pH to 8.0.  相似文献   

19.
Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer.  相似文献   

20.
Refolding of the SH3 domain of PI3 kinase from the guanidine hydrochloride (GdnHCl)-unfolded state has been probed with millisecond (stopped flow) and sub-millisecond (continuous flow) measurements of the change in fluorescence, circular dichroism, ANS fluorescence and three-site fluorescence resonance energy transfer (FRET) efficiency. Fluorescence measurements are unable to detect structural changes preceding the rate-limiting step of folding, whereas measurements of changes in ANS fluorescence and FRET efficiency indicate that polypeptide chain collapse precedes the major structural transition. The initial chain collapse reaction is complete within 150 μs. The collapsed form at this time possesses hydrophobic clusters to which ANS binds. Each of the three measured intra-molecular distances has contracted to an extent predicted by the dependence of the FRET signal in completely unfolded protein on denaturant concentration, indicating that contraction is non-specific. The extent of contraction of each intra-molecular distance in the collapsed product of sub-millisecond folding increases continuously with a decrease in [GdnHCl]. The gradual contraction is continuous with the gradual contraction seen in completely unfolded protein, and its dependence on [GdnHCl] is not indicative of an all-or-none collapse reaction. The dependence of the extent of contraction on [GdnHCl] was similar for the three distances, indicating that chain collapse occurs in a synchronous manner across different segments of the polypeptide chain. The sub-millisecond measurements of folding in GdnHCl were unable to determine whether hydrophobic cluster formation, probed by ANS fluorescence measurement, precedes chain contraction probed by FRET. To determine whether hydrogen bonding plays a role in initial chain collapse, folding was initiated by dilution of the urea-unfolded state. The extent of contraction of at least one intra-molecular distance in the collapsed product of sub-millisecond folding in urea is similar to that seen in GdnHCl, and the initial contraction in urea too appears to be gradual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号