首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
All organisms are equipped with systems for detoxification of the metalloids arsenic and antimony. Here, we show that two parallel pathways involving the AP-1-like proteins Yap1p and Yap8p are required for acquisition of metalloid tolerance in the budding yeast S. cerevisiae. Yap8p is demonstrated to reside in the nucleus where it mediates enhanced expression of the arsenic detoxification genes ACR2 and ACR3. Using chromatin immunoprecipitation assays, we show that Yap8p is associated with the ACR3 promoter in untreated as well as arsenic-exposed cells. Like for Yap1p, specific cysteine residues are critical for Yap8p function. We further show that metalloid exposure triggers nuclear accumulation of Yap1p and stimulates expression of antioxidant genes. Yap1p mutants that are unable to accumulate in the nucleus during H(2)O(2) treatment showed nearly normal nuclear retention in response to metalloid exposure. Thus, our data are the first to demonstrate that Yap1p is being regulated by metalloid stress and to indicate that this activation of Yap1p operates in a manner distinct from stress caused by chemical oxidants. We conclude that Yap1p and Yap8p mediate tolerance by controlling separate subsets of detoxification genes and propose that the two AP-1-like proteins respond to metalloids through distinct mechanisms.  相似文献   

4.
5.
6.
Molina L  Kahmann R 《The Plant cell》2007,19(7):2293-2309
The fungus Ustilago maydis is a biotrophic pathogen of maize (Zea mays). In its genome we have identified an ortholog of YAP1 (for Yeast AP-1-like) from Saccharomyces cerevisae that regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H(2)O(2) than wild-type cells, and their virulence was significantly reduced. U. maydis yap1 could partially complement the H(2)O(2) sensitivity of a yap1 deletion mutant of S. cerevisiae, and a Yap1-green fluorescent protein fusion protein showed nuclear localization after H(2)O(2) treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two Cys residues prevented accumulation in the nucleus, and the respective mutant strains showed the same virulence phenotype as Deltayap1 mutants. Diamino benzidine staining revealed an accumulation of H(2)O(2) around yap1 mutant hyphae, which was absent in the wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection, Yap1 showed nuclear localization after penetration up to 2 to 3 d after infection. Through array analysis, a large set of Yap1-regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its Yap1-controlled H(2)O(2) detoxification system for coping with early plant defense responses.  相似文献   

7.
8.
9.
10.
11.
12.
When human parathyroid hormone (hPTH) is expressed as a secretory product in yeast, the main problem is the aberrant proteolytic cleavage that reduces the yield of intact protein. To overcome this problem, we developed an hPTH expression system using a host strain in which the YAP3 gene encoding yeast aspartic protease 3 (YAP3) was disrupted. After 48 h of culture, most of the hPTH secreted by the yap3 disruptant remained intact, whereas more than 90% of the hPTH secreted by the wild-type strain was cleaved. When the authentic hPTH was incubated in each of the culture supernatants of untransformed yap3 disruptant and wild-type strain, the proteolysis proceeded much more slowly in the culture supernatant of yap3 disruptant than in that of the wild type. The extent of hPTH proteolysis was also significantly reduced by the addition of pepstatin A, a specific aspartic protease inhibitor. The results suggest that YAP3 is involved in the internal cleavage of hPTH expressed in yeast. The correct processing of the intact hPTH secreted in the yap3 disruptant demonstrates that the yeast mutant lacking the YAP3 activity is a suitable host for the high-level expression of intact hPTH. Received: 8 December 1997 / Received last revision: 3 March 1998 / Accepted: 19 April 1998  相似文献   

13.
14.
15.
16.
17.
18.
A CDC25 homologue from rice functions as an arsenate reductase   总被引:6,自引:0,他引:6  
Enzymatic reduction of arsenate to arsenite is the first step in arsenate metabolism in all organisms studied. The rice genome contains two ACR2-like genes, OsACR2.1 and OsACR2.2, which may be involved in regulating arsenic metabolism in rice. Here, we cloned both OsACR2 genes and expressed them in an Escherichia coli strain in which the arsC gene was deleted and in a yeast (Saccharomyces cerevisiae) strain with a disrupted ACR2 gene. OsACR2.1 complemented the arsenate hypersensitive phenotype of E. coli and yeast. OsACR2.2 showed much less ability to complement. The gene products were purified and demonstrated to reduce arsenate to arsenite in vitro, and both exhibited phosphatase activity. In agreement with the complementation results, OsACR2.1 exhibited higher reductase activity than OsACR2.2. Mutagenesis of cysteine residues in the putative active site HC(X)(5)R motif led to nearly complete loss of both phosphatase and arsenate reductase activities. In planta expression of OsACR2.1 increased dramatically after exposure to arsenate. OsACR2.2 was observed only in roots following arsenate exposure, and its expression was less than OsACR2.1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号