首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Effective RNA interference (RNAi) methods have been developed in many pest species, enabling exploration of gene function. Until now RNAi had not been attempted in the cat flea, Ctenocephalides felis, although the development of RNAi approaches would open up potential avenues for control of this important pest. This study aimed to establish if an RNAi response occurs in adult C. felis upon exposure to double-stranded RNA (dsRNA), which administration methods for dsRNA delivery could bring about effective gene knockdown and to investigate dynamics of any RNAi response. Knockdown of 80% of GSTσ was achieved by intrahaemoceolic microinjection of dsGSTσ but this invasive technique was associated with relatively high mortality rates. Immersing C. felis in dsGSTσ or dsDicer-2 overnight resulted in 65% knockdown of GSTσ or 60% of Dicer-2, respectively, and the degree of knockdown was not improved by increasing the dsRNA concentration in the bathing solution. Unexpectedly, the greatest degree of knockdown was achieved with the continuous administration of dsRNA in whole blood via a membrane feeding system, resulting in 96% knockdown of GSTσ within 2?days and sustained up to, at least, 7?days. Thus, unlike in many other species, the gut nucleases do not impair the RNAi response to ingested dsRNA in C. felis. A modest, but significant, upregulation of Dicer-2 and Argonaute2 was detectable 3?h after exposure to exogenous dsRNA, implicating the short-interfering RNA pathway. To our knowledge this study represents the first demonstration of experimentally induced RNAi in the cat flea as well as giving insight into how the gene knockdown response progresses.  相似文献   

2.
猪 2型圆环病毒 (porcinecircovirus 2 ,PCV2 )是断乳仔猪多系统衰竭综合征 (postweaningmultisystemicwastingsyndrome,PMWS)的原发性病原。PCV2的ORF2编码病毒唯一的结构蛋白Cap。根据GenBank中公布的PCV2JXL株的序列设计一对引物 ,应用PCR方法从该毒株感染的PK 15细胞中扩增出完整的ORF2基因 ,将此基因克隆于本实验室此前构建的塞姆利基森林病毒 (SemlikiForestvirus,SFV)RNA复制子衍生的新型真核表达载体Psfv1cs中的BamHⅠ位点 ,获得重组质粒pSFV1CS Cap。用pSFV1CS-Cap分别转染BHK-21细胞和293T细胞 ,经间接免疫荧光试验检测表明 ,PCV2 ORF2基因在转染细胞中得到表达。小鼠接种试验表明 ,该重组质粒能诱导小鼠产生特异性抗体.  相似文献   

3.
The effect of the sulphur atom on the uracil ring was analyzed in different DNA:RNA microhelixes with three nucleotide base-pairs, including uridine, 2-thiouridine, 4-thiouridine, 2,4-dithiouridine, cytidine, adenosine and guanosine. Distinct backbone and helical parameters were optimized at different density functional (DFT) levels. The Watson-Crick pair with 2-thiouridine appears weaker than with uridine, but its interaction with water molecules appears easier. Two types of microhelixes were found, depending on the H-bond of H2′ hydroxyl atom: A-type appears with the ribose ring in 3E-envelope C3′-endo, and B-type in 2E-envelope C2′-endo. B-type is less common but it is more stable and with higher dipole-moment. The sulphur atoms significantly increase the dipole-moment of the microhelix, as well as the rise and propeller twist parameters. Simulations with four Na atoms H-bonded to the phosphate groups, and further hydration with explicit water molecules were carried out. A re-definition of the numerical value calculation of several base-pair and base-stacking parameters is suggested.  相似文献   

4.
RNA-primed discontinuous DNA synthesis was studied in an in vitro system consisting of washed nuclei from synchronized S-phase HeLa cells. A new technique proved useful for the purification of short nascent fragments of DNA (Okazaki fragments). Mercurated dCTP was substituted for dCTP in the DNA synthesis reaction. Short nascent pieces (4–6 S) of mercurated DNA were found to bind preferentially to sulfhydryl-agarose, and could be eluted with mercaptoethanol. The isolated fragments were assayed for the presence of covalently linked RNA by the spleen exonuclease method described by Kurosawa et al. (Kurosawa, Y., Ogawa, T., Hirose, S., Okazaki, T. and Okazaki, R. (1975) J. Mol. Biol. 96, 653–664). Following a 30 s incubation with [3H]TTP in the absence of added ribonucleotides, approximately 20% of the nascent strands synthesized in washed nuclear preparations had RNA attached. These RNA primers either preexisted in the nuclei or were formed from endogenous ribonucleotides. The 5′ ends of the primers appeared to be largely in a phosphorylated state. In the absence of added ribonucleotides, these RNA-DNA linkages disappeared within 2 min, whereas if ribonucleotides were added, the number of RNA primers increased to 40% and remained at this level for greater than 2 min. To obtain maximal levels of RNA primer, the addition of all three of the ribonucleotides, rCTP, rGTP and rUTP (0.1 mM), as well as high levels of rATP (5 mM) was required. Addition of ribonucleotides also markedly enhanced the amount of nascent DNA fragments synthesized. However, in the absence of added ribonucleotides, after RNA primers had disappeared, nascent DNA fragments were still initiated at a significant rate. These results suggest that RNA primers play an important role in the initiation of Okazaki fragments but that synthesis can also be initiated by alternative mechanisms. An important role for ATP in RNA primer synthesis is suggested.  相似文献   

5.
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5′ end of the mRNA 3′ cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive + 1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the + 1 extended 5′ cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.  相似文献   

6.
Conformation behavior of phase T2 DNA in the process of its interaction with it E. coli RNA polymerase was studied using spin labeling technique. T2 DNA was modified by the spin-labeled imidazole at OH-groups of glucosylated cytidine residues. It was shown that the binding of RNA polymerase under the conditions favoring the formation of open promoter complexes induces specific conformational changes in the spin-labeled DNA. The observed conformational changes encompass not only the promoter regions of DNA which are involved in direct contacts with RNA polymerase molecules but extend over remote DNA sites (long-range effect). In relation to this effect, current theoretical models of DNA dynamics are discussed.  相似文献   

7.
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4′,6-diamidino-2-phenylindole (DAPI) with the right handed Watson–Crick base paired A-form and the left-handed Hoogsteen base paired HL-form of poly(rC)·poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and HL-form of poly(rC)·poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the HL-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the HL-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and HL-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA–ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号