首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

3.
Summary and Conclusions  Without disturbing the observed processes, the MRI methods combined with the dissolution studies provide insight into the phenomena occurring when the dosage form comes into contact with aqueous fluids. The MR images allow one to observe the solvent penetration into the hydrophilic matrix and the hydrogel formation. The data obtained in the MRI studies complement information obtained from the dissolution studies. The analysis of MR images may support the explanation of differences in the drug-releasing or floating properties of HBS. Published: February 23, 2007  相似文献   

4.
Long-term treatment of l-dopa for Parkinson’s disease (PD) patients induces adverse effects, including dyskinesia, on–off and wearing-off symptoms. However, the cause of these side effects has not been established to date. In the present study, therefore, 3-O-methyldopa (3-OMD), which is a major metabolite of l-dopa, was tested to determine whether it plays a role in the aforementioned adverse effects. The effects of 3-OMD on the dopaminergic nervous system in the brain were investigated, by examining behavioral, biochemical, and cellular changes in male Sprague–Dawley rats and catecholamine-producing PC12 neuronal cells. The results revealed that the intracerebroventricular (icv) injection of 1 μmol of 3-OMD impaired locomotor activities by decreasing movement time (MT), total distance (TD), and the number of movement (NM) by 70, 74 and 61%, respectively. The biochemical analysis results showed that a single administration of 1 μmole of 3-OMD decreased the dopamine turnover rate (DOPAC/DA) by 40.0% in the rat striatum. 3-OMD inhibited dopamine transporter and uptake in rat brain striatal membranes and PC12 cells. The subacute administration of 3-OMD (5 days, icv) also significantly impaired the locomotor activities and catecholamine levels. 3-OMD induced cytotoxic effects via oxidative stress and decreased mitochondrial membrane potential in PC12 cells, indicating that 3-OMD can damage neuronal cells. Furthermore, 3-OMD potentiated l-dopa toxicity and these toxic effects induced by both 3-OMD and l-dopa were blocked by vitamin E (α-tocopherol) in PC12 cells, indicating that 3-OMD may increase the toxic effects of l-dopa to some extent by oxidative stress. Therefore, the present study reveals that 3-OMD accumulation from long-term l-dopa treatment may be involved in the adverse effects of l-dopa therapy. Moreover, l-dopa treatment might accelerate the progression of PD, at least in part, by 3-OMD.  相似文献   

5.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

6.
A new tyrosinase was isolated from Aeromonas media strain WS and purified to homogeneity. The purified tyrosinase, termed TyrA, had a molecular mass of 58 kDa and an isoelectric point of 4.90. It exhibited optimal monophenol and diphenol oxidase activities under basic conditions (pH > 8.0). TyrA had a relatively higher affinity to diphenol substrate l-dihydroxyphenylalanine (l-dopa) than many other tyrosinases. EDTA or glutathione notably inhibited the enzymatic activities of TyrA, whereas Triton X-100 and SDS activated them. The full-length TyrA gene was cloned, and it encodes a 518 amino acid protein with little similarities to other reported tyrosinases. However, the purified recombinant TyrA expressed in Escherichia coli demonstrated tyrosinase activity. These results suggest that TyrA is the first reported distinct tyrosinase involved in melanin production in the genus Aeromonas.  相似文献   

7.
A 2 × 2 factorial arrangement of treatments in randomized design was conducted to investigate the effect of different selenomethionine (SM) sources and levels on the productive performance of breeder hens and the Se distribution in the inclusion of eggs and serum and tissues of breeder hens and its offspring. A total of 480 Ling-Nan-Huang breeder hens, 48 weeks of age, were allocated to four treatments, each of which included three replicates of 40 hens. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. Two SM forms of dl-SM and l-SM were supplemented at 0.15 or 0.30 mg Se/kg into the basal diet. Results showed that the Se level of 0.15 mg/kg supplemented in the diet, compared to 0.30 mg/kg, significantly elevated the percentage of egg production (p < 0.05), hatchability (p < 0.01), and birthrate (p < 0.01), whereas the Se level of 0.30 mg/kg led to a higher Se content in egg contents, serum, and all tissues (p < 0.01). In addition, the form of dl-SM showed a significant increase in Se content of egg inclusion (p < 0.01), serum (p < 0.01), and all tissues (p < 0.01, except breeder hens’ pancreas and its offspring’s liver and breast muscle). The birthrate and yolk Se content were markedly influenced by the interaction between Se source and Se level (p < 0.01). The above results suggested that dl-SM, compared to l-SM, had a similar equal effect on the performance of breeder hens, but dl-SM was superior to l-SM with respect to selenium distribution in egg inclusion, serum, and tissues.  相似文献   

8.
Based on the report that the introduction of the biosynthetic precursor of lincomycin, propylproline, could increase the production of lincomycin (Bruce et al. in US Patent 3,753,859, 1973), a mutant strain pro10–20, with resistance of feedback suppression of proline (an analog of propylproline) was thus selected and lincomycin production increased by 10%. The addition of three amino acids (l-proline, l-tyrosine, l-alanine) which are the precursors of propylproline to the fermentation medium was found to enhance the accumulation of l-dopa through different pathways and was favorable to lincomycin biosynthesis. The production of lincomycin was increased by 23, 10, 13%, respectively, with the addition of 0.05 g L−1 l-proline at 60 h, 0.005 g L−1 l-tyrosine and 0.1 g L−1 l-alanine directly in the medium.  相似文献   

9.
Characteristics of dipeptide transport in pig jejunum in vitro   总被引:4,自引:0,他引:4  
 Characteristics of dipeptide transport in pig jejunum were investigated in vitro by applying the Ussing-chamber technique and mucosal uptake studies. Addition of both glycyl-l-glutamine and glycyl-l-sarcosine (20 mmol · l−1) to the mucosal buffer solution significantly increased the short-circuit current by 2.60 ± 0.15 and 1.57 ± 0.20 μeq · cm−2 · h−1, respectively. Concentration-dependent changes in short-circuit current followed Michaelis-Menten kinetics with similar affinity constants for both dipeptides. From unidirectional flux rates for radiolabelled glycyl-l-sarcosine, a net flux rate for glycyl-l-sarcosine of 49.8 ± 6.7 nmol · cm−2 · h−1 was calculated. In mucosal uptake experiments, the apical influx of 14C-labelled glycyl-l-sarcosine into isolated porcine mucosa was pH dependent and significantly inhibited by glycyl-l-glutamine. Moreover, RT-PCR studies with primers derived from rabbit PepT1 identified two PCR fragments of identical size to rabbit PepT1 from pig intestinal mRNA preparations. In conclusion, our studies revealed key features of mammalian intestinal peptide transporters and give evidence for a PepT1-like transporter in the pig jejunum that could significantly contribute to the overall amino acid absorption from the gut. Accepted: 30 June 1999  相似文献   

10.
This study was conducted to investigate the effects of different sources of dietary selenium (Se) supplementation on growth performance, meat quality, Se deposition, and antioxidant property in broilers. A total of 600 one-day-old Ross 308 broilers with an average body weight (BW) of 44.30 ± 0.49 g were randomly allotted to three treatments, each of which included five replicates of 40 birds. These three groups received the same basal diet containing 0.04 mg Se/kg, supplemented with 0.15 mg Se/kg from sodium selenite (SS) or from l-selenomethionine (l-Se-methionine (Met)) or from d-selenomethionine (d-Se-Met). The experiment lasted 42 days. Both Se source and time significantly influenced (p < 0.01) drip loss of breast muscle. Supplementation with l-Se-Met and d-Se-Met were more effective (p < 0.05) in decreasing drip loss than SS. Besides, the pH value of breast muscle was also significantly influenced (p < 0.05) by time. The SS-supplemented diet increased more (p < 0.05) liver, kidney, and pancreas glutathione peroxidase (GSH-Px) activities than the d-Se-Met-supplemented diet. In addition, l-Se-Met increased more (p < 0.01) liver and pancreas GSH-Px activities than d-Se-Met. The antioxidant status was greatly improved in broilers of l-Se-Met-treated group in comparison with the SS-treated group and was illuminated by the increased glutathione (GSH) concentration in serum, liver, and breast muscle (p < 0.05); superoxide dismutase (SOD) activity in liver (p < 0.01); total antioxidant capability (T-AOC) in kidney, pancreas, and breast muscle (p < 0.05) and decreased malondialdehyde (MDA) concentration in kidney and breast muscle (p < 0.05) of broilers. Besides, supplementation with d-Se-Met was more effective (p < 0.01) in increasing serum GSH concentration and decreasing breast muscle MDA concentration than SS. l-Selenomethionine supplementation significantly increased GSH concentration in liver and breast muscle (p < 0.05); SOD activity in liver (p < 0.01); and T-AOC in liver, pancreas, and breast muscle (p < 0.05) of broilers, compared with broilers fed d-Se-Met diet. The addition of l-Se-Met and d-Se-Met increased (p < 0.01) Se concentration in serum and different organs studied of broilers in comparision with broilers fed SS diet. Therefore, dietary l-Se-Met and d-Se-Met supplementation could improve antioxidant capability and Se deposition in serum and tissues and reduce drip loss of breast muscle in broilers compared with SS. Besides, l-Se-Met is more effective than d-Se-Met in improving antioxidant status in broilers.  相似文献   

11.
Synthesis of cyanophycin (multi-l-arginyl-poly-l-aspartic acid, CGP) in recombinant organisms is an important option to obtain sufficiently large amounts of this polymer with a designed composition for use as putative precursors for biodegradable technically interesting chemicals. Therefore, derivates of CGP, harbouring a wider range of constituents, are of particular interest. As shown previously, cyanophycin synthetases with wide substrate ranges incorporate other amino acids than arginine. Therefore, using an organism, which produces the required supplement by itself, was the next logical step. Former studies showed that Pseudomonas putida strain ATCC 4359 is able to produce large amounts of l-citrulline from l-arginine. By expressing the cyanophycin synthetase of Synechocystis sp. PCC 6308, synthesis of CGP was observed in P. putida ATCC 4359. Using an optimised medium for cultivation, the strain was able to synthesise insoluble CGP amounting up to 14.7 ± 0.7% (w/w) and soluble CGP amounting up to 28.7 ± 0.8% (w/w) of the cell dry matter, resulting in a total CGP content of the cells of 43.4% (w/w). HPLC analysis of the soluble CGP showed that it was composed of 50.4 ± 1.3 mol % aspartic acid, 32.7 ± 2.8 mol % arginine, 8.7 ± 1.6 mol % citrulline and 8.3 ± 0.4 mol % lysine, whereas the insoluble CGP contained less than 1 mol % of citrulline. Using a mineral salt medium with 1.25 or 2% (w/v) sodium succinate, respectively, plus 23.7 mM l-arginine, the cells synthesised insoluble CGP amounting up to 25% to 29% of the CDM with only a very low citrulline content.  相似文献   

12.
α-l-Rhamnosidase from Aspergillus terreus was covalently immobilized on the following ferromagnetic supports: polyethylene terephthalate (Dacron-hydrazide), polysiloxane/polyvinyl alcohol (POS/PVA), and chitosan. The powdered supports were magnetized by thermal coprecipitation method using ferric and ferrous chlorides, and the immobilization was carried out via glutaraldehyde. The activity of the Dacron-hydrazide (0.53 nkat/μg of protein) and POS/PVA (0.59 nkat/μg of protein) immobilized enzyme was significantly higher than that found for the chitosan derivative (0.06 nkat/μg of protein). The activity–pH and activity–temperature profiles for all immobilized enzymes did not show difference compared to the free enzyme, except the chitosan derivative that presented higher maximum temperature at 65 °C. The Dacron-hydrazide derivative thermal stability showed a similar behavior of the free enzyme in the temperature range of 40–70 °C. The POS/PVA and chitosan derivatives were stable up to 60 °C, but were completely inactivated at 70 °C. The activity of the preparations did not appreciably decrease after ten successive reuses. Apparent K m of α-l-rhamnosidase immobilized on magnetized Dacron-hydrazide (1.05 ± 0.22 mM), POS/PVA (0.57 ± 0.09 mM), and chitosan (1.78 ± 0.24 mM) were higher than that estimated for the soluble enzyme (0.30 ± 0.03 mM). The Dacron-hydrazide enzyme derivative showed better performance than the free enzyme to hydrolyze 0.3% narigin (91% and 73% after 1 h, respectively) and synthesize rhamnosides (0.116 and 0.014 mg narirutin after 1 h, respectively).  相似文献   

13.
A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.  相似文献   

14.
Summary Escherichia intermedia cells were immobilized by entrapment in a polyacrylamide gel and used for l-dopa synthesis from pyrocatechol, pyruvate and ammonia. An immobilized cell preparation containing 75 mg cells/g gel retained 45%–50% of the activity of free cells. The effect of temperature, pH and substrate concentration of the initial rate of l-dopa synthesis was very similar for free and immobilized cells. Substrate inhibition was observed for pyrocatechol, pyruvate and ammonia. In a batch reactor, 5.4 g·l-1 l-dopa was obtained, with 100% conversion yield of pyrocatechol and l-dopa productivity of 0.18 g·l-1·h-1. The use of a pyrocatechol-borate complex decreased by-product formation and catalyst inactivation.  相似文献   

15.
One of the leading hypotheses regarding the origin of prebiotic molecules on primitive Earth is that they formed from inorganic molecules in extraterrestrial environments and were delivered by meteorites, space dust and comets. To evaluate the availability of extraterrestrial amino acids, it is necessary to examine their decomposition and oligomerization rates as induced by extraterrestrial energy sources, such as vacuum ultraviolet (VUV) and X-ray photons and high energy particles. This paper reports the quantum yields of decomposition ((8.2 ± 0.7) × 10−2 photon−1) and homo-dimerization ((1.2 ± 0.3) × 10−3 photon−1) and decomposition of the dimer (0.24 ± 0.06 photon−1) of solid l-alanine (Ala) induced by VUV light with an energy of 7.2 eV. Using these quantum yields, the half-life of l-Ala on the surface of a space object in the present earth orbit was estimated to be about 52 days, even when only photons with an energy of 7.2 eV emitted from the present Sun were considered. The actual half-life of solid l-Ala on the surface of a space object orbit around the present day Earth would certainly be much shorter than our estimate, because of the added effect of photons and particles of other energies. Thus, we propose that l-Ala needs to be shielded from solar VUV in protected environments, such as the interior of a meteorite, within a time scale of days after synthesis to ensure its arrival on the primitive Earth.  相似文献   

16.
A gram-negative, rod-shaped bacterium capable of utilizing l-asparagine as its sole source of carbon and nitrogen was isolated from soil and identified as Enterobacter cloacae. An intracellularly expressed l-asparaginase was detected and it deaminated l-asparagine to aspartic acid and ammonia. High-pressure liquid chromatography analysis of a cell-free asparaginase reaction mixture indicated that 2.8 mM l-asparagine was hydrolyzed to 2.2 and 2.8 mM aspartic acid and ammonia, respectively, within 20 min of incubation. High asparaginase activity was found in cells cultured on l-fructose, d-galactose, saccharose, or maltose, and in cells cultured on l-asparagine as the sole nitrogen source. The pH and temperature optimum of l-asparaginase was 8.5 and 37–42 °C, respectively. The half-life of the enzyme at 30 °C and 37 °C was 10 and 8 h, respectively. Received: 19 February 1998 / Received last revision: 4 June 1998 / Accepted: 10 July 1998  相似文献   

17.
Corynebacterium glutamicum played a central role in the establishment of fermentative production of amino acids, and it is a model for genetic and physiological studies. The general aromatic amino acid transporter, AroP Cg , was the sole functionally identified aromatic amino acid transporter from C. glutamicum. In this study, the ncgl1108 (named as pheP Cg ), which is located upstream of the genetic cluster (ncgl1110 ∼ ncgl1113) for resorcinol catabolism, was identified as a new l-Phe specific transporter from C. glutamicum RES167. The disruption of pheP Cg resulted in RES167∆ncgl1108, and this mutant showed decreased growth on l-Phe (as nitrogen source) but not on l-Tyr or l-Trp. Uptake assays with unlabeled and 14C-labeled l-Phe and l-Tyr indicated that the mutants RES167∆ncgl1108 showed significant reduction in l-Phe uptake than RES167. Expression of pheP Cg in RES167∆ncgl1108/pGXKZ1 or RES167∆(ncgl1108-aroP Cg )/pGXKZ1 restored their ability to uptake for l-Phe and growth on l-Phe. The uptake of l-Phe was not inhibited by nine amino acids but by l-Tyr. The K m and V max values of RES167∆(ncgl1108-aroP Cg )/pGXKZ1 for l-Phe were determined to be 10.4 ± 1.5 μM and 1.2 ± 0.1 nmol min−1 (mg DW)−1, respectively, which are different from K m and V max values of RES167∆(ncgl1108-aroP Cg ) for l-Phe [4.0 ± 0.4 μM and 0.6 ± 0.1 nmol min−1 (mg DW)−1]. In conclusion, this PheP Cg is a new l-Phe transporter in C. glutamicum.  相似文献   

18.
Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O2. While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1–10 mM) ± mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP+) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pHex) from neutral to 6.7 ± 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 ± 0.5 mM; +GLU 12.35 ± 1.3 mM; +GLU + MPP 18.1 ± 1.8 mM), acetate (Ctrl 0.84 ± 0.13 mM: +GLU 1.3 ± 0.15 mM; +GLU + MPP 2.7 ± 0.4 mM), fumarate, and a-ketoglutarate (<10 μM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection–LC show accumulation of l-alanine (1.6 ± .052 mM), l-glutamate (285 ± 9.7 μM), l-asparagine (202 ± 2.1 μM), and l-aspartate (84.2 ± 4.9 μM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2,4-dinitrophenylhydrazine—Brady's reagent), acetoin (Voges–Proskauer test), or alcohols (NAD+-linked alcohol dehydrogenase). In conclusion, these results provide preliminary evidence to suggest the existence of an active pyruvate–alanine transaminase or phosphotransacetylase/acetyl-CoA synthetase pathway to be involved with anaerobic energy metabolism of cancer cells.  相似文献   

19.
Nitric oxide (NO) is a short-lived radical that functions as a neurotransmitter in the central nervous system and plays a physiological role in the regulation of hypothalamic–pituitary–adrenal axis and vasopressinergic axis. In the present study, we aimed to investigate the interaction between the generation of NO and vasopressin (AVP) and corticosterone release after 3 days of water deprivation in rats. Animals were previously treated with intraperitoneal (i.p.) saline or l-nitro-arginine methyl ester (L-NAME) injection. l-NAME is a nonspecific inhibitor of nitric oxide synthases. In control rats given i.p. saline or l-NAME, hypothalamic, pituitary, and plasma AVP levels and plasma corticosterone did not change from baseline levels (p > 0.05). Three days of water deprivation increased significantly the corticosterone levels in plasma (p < 0.01) and AVP levels in hypothalamus and plasma (p < 0.01), but not in pituitary, which showed a significant decrease. These variations were concomitant with the elevation of nitrates/nitrates in plasma. l-NAME injection abolished significantly (p < 0.01) the elevation of plasma corticosterone and hypothalamic AVP levels induced by water deprivation. These findings showed that in water-deprived rats, nitric oxide synthase inhibition by l-NAME inhibits corticosterone and vasopressin release, suggesting a potent stimulatory role of NO.  相似文献   

20.
Guanosine 5′-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5′-diphosphate (GDP)-l-fucose. In this study, improvement of GDP-l-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-l-fucose. The effects of overexpression of inosine 5′-monophosphate (IMP) dehydrogenase, guanosine 5′-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine–inosine kinase (Gsk) on GDP-l-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-l-fucose production. Maximum GDP-l-fucose concentration of 305.5 ± 5.3 mg l−1 was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes. Such an enhancement of GDP-l-fucose production could be due to the increase in the intracellular level of GMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号