首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage activity in Wolffian lens regeneration   总被引:3,自引:0,他引:3  
The cell type mainly involved in the phagocytic uptake of melanosomes from iris epithelial cells during Wolffian lens regeneration in the adult newt is identified on the basis of electron and light microscopic evidence as a macrophage of monocytic origin. Appearance of macrophages in iris and ciliary epithelia following lentectomy is a part of leucocytic infiltration of the area, in which granulocytes, mast cells, and other cell types also participate. The general pattern of leucocytic infiltration was studied as a function of time after lentectomy. Infiltration of the iris epithelium by macrophages is reduced when most of the melanosomes have been removed from the cytoplasm of the epithelial cells and finally ceases when depigmentation has been completed. The possibility that an immune mechanism mediated by macrophages is involved in dedifferentiation of iris epithelial cells is discussed.  相似文献   

2.
The localization of a lens forming potency in the iris epithelium was studied by autoradiographic analysis of the distribution of 3H-thymidine labelled cells to be participated in lens regeneration in newts. DNA synthesis started from the dorsal portion of the iris epithelium around 4 days after lentectomy. 5 days after lentectomy, a large number of labelled cells were mostly found in the dorsal sector, showing strong contrast to the ventral and lateral sectors of iris, which contained a few labelled cells. The labelled index (the number of labelled cells/the number of cells in the definite pigmented area of the iris epithelium) of the dorsal sector attained the highest value, 29.7 ± 2.35, on day 7 after lentectomy, and dropped temporarily. This was followed by the second peak on day 12. The dorso-ventral ratio of the labelled index reached to the highest value, 6.87 ± 0.67, on day 5. This ratio decreased rapidly after the completion of a lens rudiment, and it became about 1. In “chase” experiments by diluting the radio-isotope with excess cold thymidine, it was obviously shown that most of the cells labelled with the radio-isotope and distributed in the dorsal marginal iris 5 days after lentectomy participated in the formation of a lens regenerate during the period of chasing. From these results, the following conclusion was drawn. The iris epithelium consists of at least 2 different cell populations; one is capable of transformation into lens cells and is distributed mostly in the dorsal portion of the iris epithelium, while the other has no potency for transformation and is able to grow to compensate a loss of the dorsal marginal cells which transformed into lens cells during the process of lens regeneration.  相似文献   

3.
Although it is generally assumed that the lens regenerated in the newt eye after complete lentectomy is formed by cells derived from the dorsal iris epithelium, experimental evidence so far obtained for this transformation does not rule out participation of cells from the dorsal iris stroma. When the normal dorsal iris epithelium of adult Notophthalmus (Triturus) viridescens was isolated and cultured in the presence of frog retinal complex, newt lens tissue was produced in 88% of cultures. These lens tissues were positive for immunofluorescence for lens-fiber-specific gamma crystallins as well as for total lens protein. On the basis of a study of stromal cells contaminating the samples of dorsal iris epithelium and a test for the lens-forming capacity in vitro of the dorsal iris stroma in the presence of frog retinal complex, it is concluded that lens formation observed in the above experiment is not dependent on the contaminating stromal cells. This implies that, in Wolffian lens regeneration, fully differentiated adult cells completely withdrawn from the cell cycle are transformed into another cell type. An additional culture experiment demonstrated that lens-forming capacity is not restricted to the dorsal half of the iris epithelium, but extends into its ventral half.  相似文献   

4.
Removal of the pituitary 3 days before lentectomy retards Wolffian lens regeneration in the adult newt, Notophthalmus viridescens, by two stages over a 21-day period. Hypophysectomy 5 or 10 days after lentectomy does not alter the progress of regeneration during the subsequent 10-day period. Hypophysectomy 3 days before lentectomy also significantly decreases the incorporation of [3H]thymidine by iris epithelial nuclei 5 days after lentectomy but has no statistically significant effect on the incorporation 7 days after lentectomy.Pituitary tissue from newts or frogs enhances the regenerative activity of newt iris epithelial cells in vitro and in many cases promotes lens fiber formation. To a lesser extent, other tissues, such as nerve ganglion, also enhance the production of lens fiber cells from iris epithelium in vitro, whereas muscle tissue does not; and under certain conditions iris epithelial cells were found to depigment and redifferentiate into lens cells in the absence of other tissues in vitro.  相似文献   

5.
To try to understand the mechanism of the dedifferentiation process which occurs during metaplastic transformation of iris epithelial cells into lens cells in newt lens regeneration, the activity of N -acetylglucosaminidase in iris and iris epithelium was studied as a function of time after lentectomy. The activity was found to increase during the dedifferentiation phase of the iris epithelium. The dorsal iris, where definite dedifferentiation occurs side by side with incomplete dedifferentiation, shows significantly greater enhancement of the activity than the ventral iris, where only incomplete dedifferentiation takes place. When the cells complete dedifferentiation and engage in redifferentiation into lens cells, the level of activity drops, approaching that of the normal lens. Evidence is also presented for release of the enzyme into the ocular fluid during dedifferentiation. The possibility that the enzyme is involved in surface alterations of iris epithelial ceils engaged in dedifferentiation is discussed.  相似文献   

6.
The lens was removed from both eyes of adult newts (Notophthalmus viridescens), and the eyes were fixed in Karnovsky's fixative every 2 days 0-20 days after operation. Anterior half-eyes were prepared by standard procedures for scanning electron microscopy of the surface. Before fixation, the posterior iris surface was cleaned of adhering vitreous mechanically with forceps or by treatment with bovine testicular hyaluronidase or with hyaluronidase and collagenase. Some specimens were cryofractured in buffer or ethanol transverse to the mid-dorsal iris, and the fractured surface viewed with scanning electron microscopy (SEM). Cells with various combinations of ridges, blebs, filopodia, and lamellipodia were observed adhering to the posterior surface of the iris by 6 days after lentectomy. These cells, which exhibited the surface characteristics of macrophages, became more numerous in specimens fixed after longer intervals. Invasion of the iris epithelium was observed in a cryofractured specimen. After observations with SEM, selected specimens were embedded in plastic and sectioned for study with transmission electron microscopy (TEM). The cells on the iris surface had the cytological characteristics of macrophages, and other macrophages were located within the iris epithelium. In specimens fixed 16 or more days after lentectomy, a bulging lens vesicle was regenerating from the dorsal pupillary margin of the iris. Macrophages were absent or few on the surface of this developing lens but remained scattered over the adjoining iris. Roles that might be played by these macrophages during the transdifferentiation of iris epithelium into lens are discussed.  相似文献   

7.
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells.  相似文献   

8.
Upon lentectomy of adult newt eyes, the dorsal iris epithelium produces a cell population that develops into a new lens. The tissue transformation can be completed not only in the isolated lentectomized eye cultured as a whole, but also in the isolated newt normal dorsal iris combined with the retina of frog larvae in vitro. In this study, 93% of such cultures produced lens tissue made up of newt cells. Well-differentiated lens fibre cells were formed which showed positive immunofluorescence for gamma crystallins. When the isolated dorsal iris epithelium was cultured under the same conditions, well-differentiated lens tissue was again formed in 95% of the cases, suggesting that iris epithelial cells and not iris stromal cells are responsible for lens formation. In contrast, the combination of newt ventral iris with frog retina did not produce any newt lens tissue. No lens tissue was produced when the dorsal iris was cultured with newt spleen or lung, although a considerable number of iris epithelial cells became depigmented. Isolated normal dorsal iris or normal dorsal iris epithelium cultured alone infrequently produced a population of depigmented cells but failed to form lens tissue. On the basis of the present and earlier data, it is concluded that in Wolffian lens regeneration in situ , interaction of the iris epithelial cells with the retina plays a decisive role. However, it is suggested that the iris epithelial cells may have an inherent tendency towards lens formation, and that the factor(s) from the retina facilitates the realization of this tendency, rather than instructing the cells to produce lens. The reported experiments provide the first direct evidence for the existence of cellular metaplasia by demonstrating transformation of fully differentiated iris epithelial cells into lens cells.  相似文献   

9.
Histochemical procedures for acid phosphatase in normal and lens-regenerating eyes of the urodele Diemictylus viridescens demonstrate activity in a variety of structures. In the normal urodele eye, acid phosphatase is present in conjunctival and corneal epithelial cells and associated glands, in blood vessel endothelium and posterior epithelial cells of the iris, in the anterior lens epithelium, and in the cytoplasm of the optic nerve. Acid phosphatase in the lens-regenerating eye is localized in the same structures as in the normal eye as well as in increased amounts in the corneal epithelial cells and stromal macrophages at the lentectomy wound site and in the posterior portion of the developing lens during completion of differentiation of primary into mature lens fibers characterized by loss of many intracellular organelles. On the basis of these histochemical findings, it is proposed that hydrolytic lysosomal enzymes play an important role in the processes of cellular and intracellular destruction and synthesis which occur during Wolffian lens regeneration in the urodele.  相似文献   

10.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

11.
Lentectomy of the newt eye leads to formation of the lens from the iris. The initial event which occurs in the iris after lentectomy is enhancement of uridine incorporation into RNA. The present data demonstrate that surgery on the cornea without lentectomy enhances uridine incorporation into iris RNA. However, the profile of incorporation after cornea surgery is different from that after lentectomy. Furthermore, cornea surgery fails to cause the high level of incorporation of thymidine into iris which occurs after lentectomy. Cornea surgery also causes enhancement of uridine incorporation into lens RNA with a profile different from that in iris RNA.  相似文献   

12.
Lens regeneration in adult salamanders occurs at the pupillary margin of the mid-dorsal iris where pigmented epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. It is not understood how the injury caused by removal of the lens (lentectomy) in one location is linked to initiating the response in a different spatial location (dorsal iris) and to this particular sector. We propose that the blood provides a link between the localised coagulation and signal transduction pathways that lead to regeneration. A transmembrane protein (tissue factor) is expressed in a striking patch-like domain in the dorsal iris of the newt that localises coagulation specifically to this location, but is not expressed in the axolotl, a related species that does not show thrombin activation after lentectomy and cannot regenerate its lens. Our hypothesis is that tissue factor expression localises the initiation of regeneration through the activation of thrombin and the recruitment of blood cells, leading to local growth factor release. This is the first example of gene expression in a patch of cells that prefigures the location of a regenerative response, and links the immune system with the initiation of a regenerative program.  相似文献   

13.
In Wolffian lens regeneration, lentectomized newt eye can produce a new lens from the dorsal marginal iris, but the ventral iris has never shown such capabilities. To investigate the difference of lens regenerating potency between dorsal and ventral iris epithelium at the cellular level, a transplantation system using cell reaggregates was developed. Two methods were devised for preparing the reaggregates from pigmented iris epithelial cells. One was rotating cells in an agar-coated multiplate on a gyratory shaker and the other was incubating cells in a microcentrifuge tube after slight centrifugation. Reaggregates made of dorsal iris cells that had been completely dissociated into single cells were phenotypically transformed into a lens when placed in the pupillary region of the lentectomized host eye. None of the ventral reaggregates produced a lens. Even dorsal reaggregates could not transdifferentiate into lens when they were placed away from the pupil. The produced lenses from the reaggregates were morphologically and immunohistochemically identified. To obtain evidence whether produced lenses really originated from singly dissociated cells, we labeled dissociated cells with a fluorescent dye (PKH26) before reaggregate formation and then traced it in the produced lens.  相似文献   

14.
Abstract. It has been shown that, upon lentectomy or in culture, iris epithelial cells (IECs) of adult newts become converted into lens cells, and this conversion is the basic event of lens regeneration in newts. Whether in situ or in cell culture, the conversion requires the passage of a specific number of cell cycles. The progeny of IECs which fails to traverse this cell-cycle number redifferentiates as IECs in situ. The passage through cell cycles of IECs is associated with progressive alterations of cytoplasm and cell surface, during which the original state of differentiation disappears (dedifferentiation). It is speculated that the altered state of cells caused by proliferation leads to the appearance of factors which interact with the genome and switch the gene activation pattern to that of the lens cell. In this model, developmental controls are geared to the cell-cycle progression and not directly to the activation of lens-characteristic genes. A number of points are raised which speak against the long-held idea that a factor from neural retina induces lens differentiation in IECs. It is proposed that the retinal factor plays the role of growth factor which is essential in the conversion in situ, but not required in the conversion in cell culture. The proposed model is compared with reprogramming of differentiation of some cell lines by cytidine analogs and with ontogenic systems of differentiation control.  相似文献   

15.
The mechanisms of transdifferentiation of iris epithelial cells of Rana temporaria (Anura) in culture depending on influences from different sources were studied. In terminally differentiated iris cells, the process of transdifferentiation is initiated by dedifferentiation. Melanosomes are shed from iris cells due to cell surface activity. After depigmentation, iris epithelial cells become capable of proliferating and competent to react to the influences of various exogenous factors. Under the influence of retinal factors secreted by lentectomized tadpole eyes, both dorsal and ventral irises are converted to neural retina. Under the influence of factors from eye vesicles, the irises are converted to neural retina as well. Similar results were obtained in transfilter experiments, in which a 3-day period of transfilter interaction between the irises and eye vesicles ensured depigmentation of the iris followed by transdifferentiation into complete NR with visual receptor. Lentoid formation occurred under the influence of adult frog lens epithelium. Immunofluorescent analysis confirmed the lens nature of the lentoids. In control experiments under the conditions of the tadpole eye orbit, in which programming influences were absent, iris epithelial cells remained unaffected.
The problem of true cell-reprogramming to new differentiation in contrast to expression of inherent properties of the iris epithelial cells is discussed.  相似文献   

16.
After the discovery that in adult salamanders following lentectomy a new, functional lens develops by transdifferentiation (cell-type conversion) of previously depigmented epithelial cells of the iris (Wolffian lens regeneration), this phenomenon has been intensively studied by various experimental approaches. During the last two decades it was shown that pleiomorphic aggregates of atypical lens cells (lentoids) differentiated in reaggregates of dissociated cells of the chick neural retina and in spread cell cultures of the pigmented epithelium of the iris and retina, of the neural retina and the pineal gland of the chick embryo. The neural retina of human fetuses and adults also displayed this capacity. We showed that lentoids developed at a low incidence in renal isografts of rat embryonic shields or isolated embryonic ectoderm and of lentectomized eyes of rat fetuses, as well as in organ cultures of rat embryonic shields in chemically defined media. The addition of transferrin significantly increased the incidence of differentiation of lentoids in explants. In both renal isografts and explants in vitro a continuous transformation of retinal epithelial cells into atypical lens cells was observed. In renal isografts lentoids were also observed to originate from the ependyma of the brain ventricle. All tissues having the capacity to convert into lens cells belong to the diencephalon in a broad sense. Evolutionary aspects of this feature are discussed.  相似文献   

17.
Summary An area of cell death is apparent in the lens vesicle margin and the lens stalk during closure and detachment of the lens anlage from the cephalic ectoderm. Free phagocytic cells closely associated with this area of cell death have been interpreted as cells migrating from the lens epithelium. Scanning and transmission electron microscopy, light-microscopic histochemical staining for acid phosphatase and immunostaining using MB1 (a monoclonal antibody specific for quail endothelial and hemopoietic cells) of chimeras of chick embryo and quail yolk sac were used to analyze these lens vesicle-associated free phagocytic cells. The cells have morphological features identical to those of macrophages in other embryonic tissues. In contrast to epithelial cells phagocytosing cell debris, they exhibit strong acid phosphatase activity, a feature typical of macrophages. In addition, free phagocytic cells are MB1 positive in chick embryo-quail yolk sac chimeras, hence they proceed from cells of hemangioblastic lineage originating in the yolk sac. These results indicate that the lens vesicle-associated free phagocytic cells are macrophages. Observations of MB1 positive amoeboid cells in the juxta-retinal mesenchyme and on the borders of the optic cup suggest that these macrophages migrate through the mesenchyme surrounding the eye primordium. Macrophages are seen in both the interspace between lens vesicle and ectoderm and in the lumen of the lens as well as within both the ectoderm and the lens epithelium. In these locations they remove cell debris, and thereby contribute to the complete disappearance of the area of cell death. Macrophages remain in the lens vesicle-ectoderm interspace until developmental stages at which it is invaded by corneal endothelial cells.  相似文献   

18.
Based on studies of wolffian lens regeneration in the newt, in which the lens can be regenerated from the iris pigmented epithelium, we have shown by cell culture studies that the capacity of lens transdifferentiation is not limited to the newt cells, but widely conserved in pigmented epithelial cells (PECs) of chick and quail embryos and even of human fetuses. Recently, we have established a unique in vitro model system of chick embryonic PECs. In this culture system we are able to control each step of transdifferentiation from PECs into lens cells by regulating culture conditions and to produce a homogeneous cell population with potential for synchronous differentiation into either lens or pigment cell phenotype. These multipotent (at least bipotent) cells showed cellular characteristics resembling neoplastic cells in many ways. They did not express both lens and pigment cell specific genes analyzed so far, except δ-crystallin gene, which is expressed in developing lens of chick embryos. It has been proved by application of cell culture procedures of the system that PECs dissociated from fully-grown human eyes readily transdifferentiated into lens phenotypes in the manner observed in chick embryo PECs. In addition, we could predict that molecules detected in either cell surface or intercellular space stabilized the differentiated state of PECs in the newt and that the loss of these molecules might be one of the key steps of lens regeneration from the iris epithelium.  相似文献   

19.
Removal of the lens from the eye of an adult newt (Notophthalmus viridescens) is followed by regeneration of a new lens from the dorsal iris epithelial cells at the pupillary margin. This process is dependent upon the neural retina for its normal completion in vivo and in vitro. To examine the relationship between the retina and lens regeneration, we have conducted experiments that delimit the time period during which the retinal presence is critical (in vivo) and have investigated the influence of extracts of the retina on the progress of regeneration (in vitro). In vivo, removal of the retina at day 11 seriously retards further progression of regeneration while removal of the retina at day 15 does not retard regeneration significantly. This defines a "critical period" in regeneration of the lens during which the retina is required. Explantation of regenerates 11 or 12 days after lentectomy to organ culture medium enriched with either crude retinal homogenate or extracts prepared from chick or bovine retinas according to Courty et al. ('85, Biochimie, 67:265-269) reveals that the progress of regeneration can be supported in culture by the crude extract. This is the first demonstration of complete iris-lens transformation in culture in the presence of retinal extract. It is possible that the retina acts indirectly by promoting passage of the iris epithelial cells through the critical number of mitoses required before redifferentiation into lens cells can occur (as proposed by Yamada, '77, Monogr. Dev. Biol., 13:126). It is also possible that the retina acts by directly instructing the iris cells to redifferentiate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adult newts (Notophthalmus viridescens) were lentectomized and at intervals from 4 to 21 days after lentectomy iridocorneal complexes from these animals were examined by scanning electron microscopy to allow a full appreciation for the shape of the regenerating lens. Until around day 12 after lentectomy the posterior surface of the iris is covered by a dense mat of fibrous material which cannot be removed without damage to the iris and which obscures the events of cytoplasmic shedding. The regenerate becomes visible first around stage IV (day 12). A small but clear groove demarcates the regenerate from the rest of the iris. As regeneration progresses there is a marked reduction in debris on the iris surface and the regenerate appears as a U-shaped thickening occupying about one-third of the dorsal half of the iris. During later stages (VI–X) the regenerate protrudes into the pupil inferiorly and posteriorly towards the retina, but does not encroach laterally on the remaining pigmented iris tissue. Prior to secretion of the lens capsule the outline of individual cells is visible on the surface of the regenerate and some regenerates exhibit a prominent dimple on their posterior aspects. Following secretion of the capsule the surface of the regenerate becomes smooth. Quantitative studies show that volume and maximum section area of the regenerate are both more strongly correlated with developmental stage of regeneration than with time after lentectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号