首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chaetomium thermophile var.dissitum, isolated from an experimental urban refuse compost, had the following growth characteristics: Minimum temperature, 27±1°C; optimum, 45–50°C; maximum, 57±1°C; pH optimum 5.5–6.0.A number of carbohydrates could be used for growth, but cellulase formation measured with carboxymethylcellulose as substrate was initiated only on cellulose or xylan. With cellulose as the carbon source, cellulase accumulation in the culture filtrate followed closely that of growth, when the temperature was varied. pH optimum for the cellulase system was 5.0.The optimum temperature for cellulase activity with carboxymethylcellulose as substrate varied between 77°C with 1/2 h incubation time and 58°C with 10 h incubation time.With cotton as substrate, the optimum temperature was 58°C regardless of incubation time. Carboxymethylcellulose had a higher stabilizing effect on the enzyme than cotton. The temperature stability of the cellulase was highest at pH 6.0.  相似文献   

2.
Summary Cellobiose oxidase from Phanerochaete chrysosporium was used for continuous monitoring of cellulase action on microcrystalline cellulose (Avicel). Two protocols are described, the parameter monitored being either the decline in electrode potential as ferricyanide is reduced or consumption of dioxygen. Most experiments used a commercial cellulase preparation from Trichoderma reesei and ferricyanide as acceptor. Within 1 min of an addition of cellulase, ferricyanide reduction reached a steady rate. This was converted into a rate of production of substrate for celobiose oxidase, in mol·min–1. Experiments were conducted either with a constant concentration of cellulase and increasing Avicel, or with constant Avicel and increasing cellulase. Kinetic analysis of the experiments with constant cellulase indicated a K mof 4.8 ± 1.0 (g cellulose)·1–1, which was close to the value predicted from binding studies. The specific activity of the cellulase was measured as 375±25 mol·(g cellulase)–1·min–1 in experiments with a high cellulose concentration, but was less than half this value when the cellulose was saturated with cellulase. The maximal rate of cellulose degradation was 9.6±1.3 mol·(g cellulose)–1·min–1.  相似文献   

3.
Five major endo-(1→4)-β- -glucanases (I–V) have been isolated from a cellulase preparation of P. pinophilum. The pI values for I–V were 7.4, 4.8, 4.1, 3.7, and 4.0, respectively, and the respective molecular weights were 25,000, 39,000, 62,500, 54,000, and 44,500, when determined by SDS-gel electrophoresis. Endoglucanase V was optimally active at 65–70° and I–IV were most active at 50–60°. The pH optima of I and III–V were in the range 4.0–5.0. Antiserum prepared to I reacted only with I; II antiserum reacted only with II. Endoglucanases I and V were more random in their attack on CM-cellulose and H3PO4-swollen cotton cellulose, and showed no activity against cello-oligosaccharides containing less than five -glucose residues, whereas III and IV were active against all the cello-oligosaccharides tested and acted in a less random manner, and II was intermediate in its catalytic action. III was adsorbed completely on both Avicel PH101 and H3PO4-swollen cellulose, whereas IV was not adsorbed. The endoglucanases I–V have distinct roles in the digestion of cellulose.  相似文献   

4.
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials.  相似文献   

5.
The enhancement of the cellulase activity of Aspergillus nidulans by combinational optimization technique and the usage of cellulase for the biofinishing of cotton fibers were investigated in this study. The strain isolated from decayed, outer shell of Arachis hypogaea was compared for the first time for its ability to produce cellulolytic enzyme in shaken cultures using the optimized media formulated by combinational statistical approach using one factor at a time methodology (OFAT), Plackett Burmann Methodology (PB) and response surface methodology (RSM). A four-factor-five-level central composite design (CCD) was employed to determine the maximum activity of cellulase at optimum levels of carboxy methyl cellulose (CMC), ammonium nitrate and potassium dihydrogen phosphate at varying pH values. The cellulase activity is the best so far obtained with this strain of Aspergillus nidulans. The optimum values of the parameters studied were found to be 0.75 mg/l, 1.5 mg/l, 0.01 mg/l, and 2.15 g/l for KH2PO4, NH4NO3, Thiamine HCl and CMC, respectively at pH 6.0. This optimization led to the fine tuning of the cellulase production, thereby enhancing the cellulase activity from 4.91 to 60.54 U/ml. This cellulase of higher activity was employed in the biofinishing of the cotton fibers. The results of the scanning electron microscope (SEM) analysis after the treatment favored the fact that maximum surface finishing was achieved at a cotton fiber concentration of 15% (w/v) at 45°C and pH 5.0 using cellulase (60.54 U/ml) at 16th hour of the treatment. A probable mechanism of enzymatic finishing of cotton fibers has also been represented.  相似文献   

6.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

7.
Some kinetic parameters of the β- -glucosidase (cellobiase, β- -glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β- -glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. -Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. -Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while -fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β- -glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

8.
Termitomyces clypeatus produced 450 IU xylanase ml–1 in a medium containing starch-free wheat bran powder as the carbon source. Carboxymethyl cellulase (CMCase) activity in the culture filtrate was removed by keeping the filtrate at pH 10 for 60 min followed by a change to pH 6. Treatment of Kraft pulp (bamboo) with the filtrate at pH 7 decreased the kappa number from 10.5 to 5 with release of reducing groups equivalent to 0.15 mg glucose g–1 pulp.  相似文献   

9.
Chemical and physical treatments of cotton cellulose have been studied in order to elucidate the relationship between the degree of crystallinity of cellulose and the susceptibility of cellulose to cellulase. Cotton cellulose powder was treated with the following solvents: 60% H2SO4, Cadoxen, and DMSO-p -formaldehyde. The dissolved celluloses were recovered at high yield of over 97% by addition of nine volumes of cold acetone. X-ray diffraction for measurements of relative crystallinity showed that the crystalline structure of cellulose declined in quantity and perfection by the dissolving treatment and changed to an amorphous form that is highly susceptible to enzymatic hydrolysis. These reprecipitated celluloses were hydrolyzed almost completely within 48 hr by Aspergillus niger cellulase containing mainly 1,4-β-glucan glucanohydrolase (EC 3.2.1.4), without action of 1,4-β-glucan cellobiohydrolase (EC 3.2.1. 91). On the other hand, cryo-milled cellulose (below 250 mesh) still had a crystalline structure, was resistant to cellulase, and gave a low percentage of saccharification. These results indicate that in pure cellulose there are good correlations between x-ray diffractograms and susceptibility to microbial cellulase.  相似文献   

10.
An antimicrobial finishing for cotton fabric was prepared from commercial (iSys AG, Germany) silver chloride (Ag) dispersed at different concentrations in a reactive organic–inorganic binder (RB) (iSys MTX (CHT, Germany). Pad-dry-cure and exhaustion methods were used for the sols application, giving Ag-RB coating with Ag concentration from ca. 48 to ca. 290 ppm on the cotton fabric. The presence of silver on the cotton finishes was confirmed by measuring its concentration in the fabrics with the help of inductively coupled plasma mass spectroscopy (ICP-MS). The morphology of the finished fabrics was investigated by SEM, while their composition was established from EDXS measurements combined with the results of FT-IR spectral analysis. The antimicrobial activity of variously treated cotton fabrics was assessed before and after repetitive (up to 10×) washing by the application of standard tests: for the fungi Aspergillus niger (ATCC 6275) and Chaetomium globosum (ATCC 6205) by the modified DIN 53931 standard method, while the presence of Gram-negative bacterium Escherichia coli (ATCC 25922) was followed by using ISO 20645:2004 (E) and AATCC 100-1999 standard methods. Results revealed that the antimicrobial activity of the coatings strongly depended on the concentration of Ag in the corresponding Ag-RB dispersions, indirectly depending on the preparation method (pad-dry-cure vs. exhaustion) and that the Ag-RB coatings were more effective for bacteria than for fungi. The Ag concentrations on the cotton fabrics achieved by the pad-dry-cure method (48 and 52 ppm) were not sufficient to impart satisfactory antifungal activity to the cotton fabrics, though they assured excellent reduction of the bacterium E. coli (98–100%). A minimal inhibitory concentration of Ag in the coating providing a sufficient bacterial reduction of 60% was ca. 24 ppm. Effective antifungal activity was achieved only by applying the exhaustion method, enabling high initial Ag concentration in the Ag-RB coating (>100 ppm). The antibacterial activity depended on the washing treatment. No antifungal activity was noted for washed cotton fabric, even those with highly concentrated Ag (290 ppm) in the Ag-RB coating, but a 94% bacterial reduction was obtained for the corresponding cotton fabric, after 10 repetitive washings, corroborated by the Ag concentration on washed fabric of about 65 ppm.  相似文献   

11.
True cellulase activity has been demonstrated in cell-free preparations from the thermophilic anaerobe Clostridium thermocellum. Such activity depends upon the presence of Ca2+ and a thiol-reducing agent of which dithiothreitol is the most promising. Under these conditions, native (cotton) and derived forms of cellulose (Avicel and filter paper) were all extensively solubilized at rates comparable with cellulase from Trichoderma reesei. Maximum activity of the Clostridium cellulase was displayed at 70°C and at pH 5.7 and 6.1 on Avicel and carboxymethylcellulose, respectively. In the absence of substrate at temperatures up to 70°C, carboxymethylcellulase was much more unstable than the Avicel-hydrolyzing activity.  相似文献   

12.
N-Acetyl- -glucosamine (GlcNAc) was produced from chitin by use of crude enzyme preparations. The efficient production of GlcNAc by cellulases derived from Trichoderma viride (T) and Acremonium cellulolyticus (A) was observed by HPLC analysis compared to lipase, hemicellulase, and pectinase. β-Chitin showed higher degradability than α-chitin when using cellulase T. The optimum pH of cellulase T was 4.0 on the hydrolysis of β-chitin. The yield of GlcNAc was enhanced by mixing of cellulase T and A.  相似文献   

13.
J. Gorham  J. Bridges 《Plant and Soil》1995,176(2):219-227
The optimum Ca2+ concentration for growth of cotton (Gossypium hirsutum cv. Acala SJ-2) was in the range 1 to 15 mol m–3 for plants growing in hydroponic culture with 100–150 mol m–3 NaCl. Most saline (but not sodic) soils contain higher Ca2+ concentrations. CaCl2 was inhibitory to the growth of cotton above 20–50 mol m–3. Increasing concentrations of Ca2+ in the range 0–2 mol m–2 drastically reduced Na+ accumulation in the leaves. As CaCl2 concentrations were increased above the optimum for growth there was a further reduction in leaf Na+ accumulation, but this was more than offset by increased leaf Ca2+ and Cl concentrations. Leaf K+ concentrations were not much affected by changes in external CaCl2 concentrations. The response of Mg2+ varied from an increase to a decrease with increasing external CaCl2 and was influenced by nutritional status. There was no evidence that high Ca2+ caused a deficiency of Mg2+ in cotton. Except for Cl, whose concentrations tended to decrease initially and then increase as the CaCl2 concentration increased, the anions were largely unaffected by changes in external CaCl2.  相似文献   

14.
The (1→4)-β- -glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β- -glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 m , respectively. -Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β- -glucopyranoside (Ki 2.1 μ ), cellobiose (Ki 1.95 μ ), and cellotriose (Ki 7.9 μ ) [cf. -glucose (Ki 1756 μ )]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β- -glucopyranoside appeared to be competitively inhibited by -glucono-1,5-lactone. However, inhibition of hydrolysis by -glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β- -glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β- -glucanase found in the same cellulase, namely, the (1→4)-β- -glucan cellobiohydrolase.  相似文献   

15.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   

16.
Soil and crop management practices may influence biomass growth and yields of cotton (Gossypium hirsutum L.) and sorghum (Sorghum bicolorL.) and sequester significant amount of atmospheric CO2in plant biomass and underlying soil, thereby helping to mitigate the undesirable effects of global warming. This study examined the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops [legume (hairy vetch) (Vicia villosa roth), nonlegume (rye) (Secale cerealeL), hairy vetch/rye mixture, and winter weeds orno covercrop], and three N fertilization rates (0, 60–65, and 120–130 kg N ha –1) on the amount of C sequestered in cotton lint (lint + seed), sorghum grain, their stalks (stems + leaves) and roots, and underlying soil from 2000 to 2002 in central Georgia, USA. A field experiment was conducted on a Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults). In 2000, C accumulation in cotton lint was greater in NT with rye or vetch/rye mixture but in stalks, it was greater in ST with vetch or vetch/rye mixture than in CT with or without cover crops. Similarly, C accumulation in lint was greater in NT with 60 kg N ha –1 but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in CT with 0 kg N ha –1. In 2001, C accumulation in sorghum grains and stalks was greater in vetch and vetch/rye mixture with or without N rate than in rye without N rate. In 2002, C accumulation in cotton lint was greater in CT with or without N rate but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in NT with or without N rate. Total C accumulation in the above- and belowground biomass in cotton ranged from 1.7 to 5.6 Mg ha –1 and in sorghum ranged from 3.4 to 7.2 Mg ha –1. Carbon accumulation in cotton and sorghum roots ranged from 1 to 14% of the total C accumulation in above- and belowground biomass. In NT, soil organic C at 0–10 cm depth was greater in vetch with 0 kg N ha –1 or in vetch/rye with 120–130 kg N ha –1 than in weeds with 0 and 60 kg N ha –1 but at 10–30 cm, it was greater in rye with 120–130 kg N ha –1 than in weeds with or without rate. In ST, soil organic C at 0–10 cm was greater in rye with 120–130 kg N ha –1 than in rye, vetch, vetch/rye and weeds with 0 and 60 kg N ha –1. Soil organic C at 0–10 and 10–30 cm was also greater in NT and ST than in CT. Since 5 to 24% of C accumulation in lint and grain were harvested, C sequestered in cotton and sorghum stalks and roots can be significant in the terrestrial ecosystem and can significantly increase C storage in the soil if these residues are left after lint or grain harvest, thereby helping to mitigate the effects of global warming. Conservation tillage, such as ST, with hairy vetch/rye mixture cover crops and 60–65 kg N ha –1 can sustain C accumulation in cotton lint and sorghum grain and increase C storage in the surface soil due to increased C input from crop residues and their reduced incorporation into the soil compared with conventional tillage, such as CT, with no cover crop and N fertilization, thereby maintaining crop yields, improving soil quality, and reducing erosion.  相似文献   

17.
Summary We have investigated the pacemaker properties of aggregates of cells dissociated from the atria and ventricles of 10 to 14-day-old chick embryonic hearts using a two-microelectrode current and voltage-clamp technique. These preparations usually beat spontaneously and rhythmically in tissue culture medium containing 1.3mm potassium with a beat rate typically in the range of 15–60 beats per minute. The beat rate results show considerable variability, which precludes any statistically significant comparison between the spontaneous activity of atrial and ventricular cell preparations at 10–14 days of development. However, the shapes of pacemaker voltage changes do exhibit differences characteristic of cell type. Spontaneous atrial preparations rapidly depolarize from maximum diastolic potential (–90 mV) to a plateau range of pacemaker potentials (–80 to –75 mV). The membrane subsequently depolarizes more gradually until threshold (–65 mV) is reached. In contrast, spontaneously beating ventricular cell preparations slowly hyperpolarize after maximum diastolic potential to the –100 to –95 mV range before gradually depolarizing toward threshold. Voltage-clamp analysis reveals a virtual lack of any time-dependent pacemaker current in atrial preparations. These preparations are characterized by an approximately linear background current (I bg) having a slope resistance of 100 K cm2. Ventricular preparations have a potassium ion pacemaker current with slow kinetics (I K 2), and a second time-dependent component (I x) which is activated at potentials positive to –65 mV. The background current of these preparations displays inward rectification. Computer simulations of pacemaking reveal that the initial rapid phase of pacemaker depolarization in atrial cells is determined by the membrane time constant, which is the product of membrane capacitance and the slope resistance ofI bg. The hyperpolarization after maximum diastolic potential of ventricular cells is caused byI K 2. The final slow phase of depolarization in both cell types is caused in part by the steady-state amplitude of the fast inward sodium current (I Na). This component has negative slope conductance which effectively increases the slope resistance in the vicinity of threshold compared to TTX-treated preparations. This mechanism is sufficient to produce interbeat intervals several seconds in duration, even in the absence of time-dependent pacemaker current, provided that the background current is at the appropriate level.  相似文献   

18.
Summary A 25-l scale protocol is devised for the optimal secretion and recovery of fungal cellulase. Using a selected higher yieldingTrichoderma viride SMC strain, a protocol consisted of: a) an optimized production medium rich in microcrystalline cellulose (MCC), fortified with 1% (w/v) ammonium sulphate, 0.5% (w/v) soybean flour, 0.1% (v/v) Tween-80 and other trace nutrients; b) optimized physical parameters of production, such as an inoculum containing a homogeneous suspension of 6×107 conidia per 1,28±1°C, pH 4.0±0.5, 300±20 rpm, 11000±1000 l/h aeration, and 170–220 h duration; c) optimal recovery through a filter press (450 l/h rate of filtration) followed by precipitation with 2.5–3.0 volumes of acetone (15°C and basket centrifugation (27°C, 1700 rpm)); and d) vacuum drying (35°C, 4–6 h). This afforded 70% recovery of cellulase in the form of white fluffy powder containing 20000±2000 carboxy methyl cellulase and 1000±50 units filter paperase per g activities, with raw material cost of US$ 8–10 per million carboxy methyl cellulase units. During storage for 18 months at 4°C, ambient temperature and 37°C, the cellulase preparation was found to retain 100, 75 and 60% of its initial activity, respectively.  相似文献   

19.
The capacity of Elodea nuttallii (Planch.) St. John and Elodea canadensis Michx. to remove nitrogen from water was evaluated in laboratory experiment. The growth rate of plants and their effect on the nitrogen level of hypertrophic Lake Zwemlust (the Netherlands) as well as on lake water enriched with nitrogen were investigated. The plants grew best in water enriched with up to 2 mg NH4-Nl–1 and 2 mg NH4-Nl–1 plus 2 mg NO3 Nl–1. During a 14 day experiment, plants absorbed from 75% to 90% of nitrogen. Higher nitrogen concentration than 4 mg l–1 had a negative effect on growth of both species. Elodea nuttallii and E. canadensis prefer NOinf4/p+ over NOinf4/p– when both ions were present in water in equal concentrations.  相似文献   

20.
Three different chemical treatments—sulfur dioxide, ozone, and sodium hydroxide—were applied on cotton straw, and the effect on cell-wall degradability was assessed by using rumen microorganism and Trichoderma reesei cellulase. Sulfur dioxide (applied at 70°C for 72 h) did not change the lignin content of cotton straw but reduced the concentration of hemicellulose by 48%. Ozone exerted a dual effect, both on lignin (a 40% reduction) and hemicellulose (a 54% decrease). The treatment with NaOH did not solublize cell-wall components. The in vitro organic matter digestibility with rumen fluid of cotton straw was increased significantly by ozone and SO2 treatments, by 120% and 50%, respectively, but not by NaOH. T. reesei cellulase was applied on the chemically pretreated cotton straw at a low level (6 filter paper U/g straw, organic matter), and the release of reducing sugars was determined. The highest level of reducing sugars (30.6 g/100 g organic matter) was obtained with the O3-cellulase combination, which solubilized 64% of the cellulose and 88% of the hemicellulose. the SO2- and the NaOH-pretreated cotton straw were hydrolyzed by T. reesei cellulase to the same extent (21 g reducing sugars/100 g organic matter). The rumen fluid digestibility of the enzymatic ally hydrolyzed straw was not increased further over the effect already obtained with the chemical pretreatments. However, the fermentability of the combined treatments was increased markedly. In the O3-cellulase-treated cotton straw, 83% of the rumen fluid digestible material consisted of highly fermentable components. Although ozone proved to be the most potent pretreatment for enzymic saccharification in this study, the absolute result was modest. The limited effect of the combined O3-cellulase treatment was probably associated with the pretreatment limitations, but not with the enzyme level. Based on the differential response of the chemically treated cotton straw to attack by rumen microorganisms on the one hand, and by T. reesei cellulase on the other hand, a hypothesis has been suggested as to the location of lignin and hemicellulose in the cellwall unit of cotton straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号