首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence analysis of llama (Lama glama, Camelidae) hemoglobin is described. The chains were separated, cleaved by trypsin as previously described, quantitatively characterized and sequenced in the sequenator. The llama hemoglobin differs from the human hemoglobin in that it has 25 different amino acids in the alpha chain and 24 different amino acids in the beta chain. The interaction between protein and phosphate is discussed. The earlier finding that the O2 affinity of the llama hemoglobin is dependent on its content of 2, 3-bisphosphoglycerate is interpreted here as a mutation of the 2, 3-bisphosphoglycerate contact position beta2 His in human hemoglobin to beta2 Asn in llama hemoglobin, whereby one of the four 2, 3-bisphosphoglycerate contact points is interrupted. This interruption gives rise to a diminished reduction of intrinsic oxygen affinity in the hemoglobin molecule and explains, on a molecular basis, the increased oxygen affinity of the llama hemoglobin, and consequently, the high-altitude respiration of the llama. By analogy, the increased O2 affinity of human fetal hemoglobin is interpreted according to previous physiological investigations on blood and fetal hemoglobin by the inactivation of the phosphoglycerate contact point beta143 His in the adult hemoglobin by mutation to gamma 143 Ser in the fetal hemoglobin. With respect to respiration in horses (2, 3-bisphosphoglycerate contact beta2 Gln), measurement of atomic parameters show that the amido group of the glutamine is situated close enough to the 2, 3-bisphosphoglycerate oxygen to build a hydrogen bond with the phosphate. Consequently, the explanation of the low-altitude respiration of the horse lies in the fact that glutamine and histidine fulfill sterochemically an identical function.  相似文献   

2.
Selected functional and spectroscopic properties of two human hemoglobin (HbA0) derivatives that were site-specifically cross-linked in the cleft between beta-chains where 2, 3-bisphosphoglycerate normally binds have been determined to assess the effects of the cross-linking on the behavior of the protein. Trimesoyl tris(3,5-dibromosalicylate) (TTDS) cross-links Hb between beta82Lys residues. The resulting TTDS-Hb exhibits a slower rate of oxygen dissociation and an increased rate of carbon monoxide association than observed for HbA0. The electron paramagnetic resonance (EPR) spectrum of TTDS-HbNO does not exhibit the hyperfine structure that is indicative of significant conformational change despite the fact that the 2,3-bisphosphoglycerate binding site is occupied by the cross-linking reagent. The reactivity of the beta93Cys residues of TTDS-Hb is only slightly decreased relative to that of HbA0. On the other hand, cross-linking Hb between Lys82 and the amino-terminal beta1Val group with trimesoyl tris(methyl phosphate) (TMMP) increases the rate of oxygen dissociation and reduces the rate of CO association relative to the rates observed for HbA0. In addition, the EPR spectrum of the TMMP-HbNO exhibits the three-line hyperfine structure that results from disruption of the proximal His-Fe bond of the alpha-chains, and the accessibility of the betaCys93 residues in this derivative is decreased fourfold. The present results are consistent with the conclusion that the quaternary structure of TTDS-Hb is shifted toward the R state whereas the quaternary structure of TMMP-Hb is shifted toward the T state and provides additional evidence that the identity of the residues involved in intramolecular cross-linking of hemoglobin within the 2,3-bisphosphoglycerate binding site between beta-chains can have a significant influence on the conformational and functional properties of the protein.  相似文献   

3.
Hb S Travis is a previously undescribed sickling hemoglobin with two amino acid substitutions in the beta chain: beta6 Glu leads to Val and beta142 Ala leads to Val. The beta6 Glu leads to Val mutation imparts to Hb S Travis the characteristic properties of sickling hemoglobin, namely its association with erythrocyte sickling, the insolubility of the hemoglobin in the reduced form, and a minimum gelling concentration value identical to Hb S. Unlike Hb S, Hb S Travis exhibits an increased oxygen affinity and a decreased affinity for 2,3-bisphosphoglycerate and inositol hexakisphosphate. In addition, the variant hemoglobin's tendency to autoxidize and its mechanical precipitability suggest that there are conformational differences between Hb S and Hb S Travis.  相似文献   

4.
The ability of the chicken erythrocyte to accumulate 2,3-bisphosphoglycerate (2,3-P2-glycerate) and its effect upon the oxygen affinity (P50) of the cell suspensions have been determined. Erythrocytes from chick embryos, which contain 4-6 mM 2,3-P2-glycerate, and from chickens at various ages, which contain 3-4 mM inositol pentakisphosphate but no 2,3-P2-glycerate, were incubated with inosine, pyruvate, and inorganic phosphate. Red blood cells from 20-day chick embryos incubated in Krebs-Ringer, pH 7.45, containing 20 mM inosine and 20 mM pyruvate had an increase in 2,3-P2-glycerate from 4.3 to 11.9 mM after 4 h. Importantly, as 2,3-P2-glycerate concentration increased there was a corresponding increase in P50 of the cell suspension. Further, erythrocytes from 9- and 11-week, and 7-, 14-, 24-, and 28-month-old chickens when incubated similarly with inosine and pyruvate accumulated 2,3-P2-glycerate with corresponding increases in P50 of the cell suspensions. The ability of the red cell to accumulate this compound under the incubation conditions used apparently decreases with age of the bird (e.g., 11.9 mM in the 20-day embryo to 1.1 mM in the 28-month-old chicken after 4 h incubation). Despite the presence of significant amounts of inositol-P5, the accumulation of 2,3-P2-glycerate markedly decreases oxygen affinity of the cell suspensions. The delta P50/mumol increase in 2,3-P2-glycerate in the red cells of the 20-day chick embryo after 4 h incubation is 1.5 Torr; conversely, the delta P50/mumol decrease in 2,3-P2-glycerate in the red cells of the 17-day embryo after 6 h incubation in the presence of sodium bisulfite is 2.8 Torr. The demonstrated ability of the chicken erythrocyte to accumulate 2,3-P2-glycerate in response to certain substrates suggests that regulation of concentration of this compound could contribute significantly to regulation of blood oxygen affinity in birds.  相似文献   

5.
Mole rat (Spalax ehrenbergi) hemoglobin consists of only one component. The complete amino-acid sequence of the alpha- and beta-chains of the species with the diploid chromosome number of 60 is presented. Following chain separation by chromatography on carboxymethyl cellulose CM-52, the primary structures were established by automatic Edman degradation on the chains, on the tryptic peptides, and on a peptide obtained by acid hydrolysis of the Asp-Pro bond in beta-chains. The alignment of the peptides was performed by homology with human alpha- and beta-chains. The comparison showed an exchange of 23 residues in the alpha-chains and 26 in the beta-chains. One substitution in the beta-chains concerns the surrounding of the heme. We found two exchanges in each chain in the alpha 1 beta 1-subunit interface and one in the beta-chain alpha 1 beta 2-contact points. Though all binding sites for 2,3-bisphosphoglycerate are unchanged, the mole rat blood has a high oxygen affinity as a part of adaptation to subterranean life under hypoxia and hypercapnia. A comparison of the sequence with known X-ray models of hemoglobins may give an interpretation of this fact. The primary structure of the mole rat hemoglobin shows more similarities with surface rodents, than with the mole, another small mammal, adapted to hypoxia in subterranean tunnels. The adaptation to hypoxia in mole rat and mole must be due to different mechanisms.  相似文献   

6.
The hemoglobin of the Free-Tailed Bat Tadarida brasiliensis (Microchiroptera) comprises two components (Hb I and Hb II) in nearly equal amounts. Both hemoglobins have identical beta-chains, whereas the alpha-chains differ in having glycine (Hb I) or aspartic acid (Hb II) in position 115 (GH3). The components could be isolated by DEAE-Sephacel chromatography and separated into the globin chains by chromatography on carboxymethyl-cellulose CM-52. The sequences have been determined by Edman degradation with the film technique or the gas phase method (the alpha I-chains with the latter method only), using the native chains and tryptic peptides, as well as the C-terminal prolyl-peptide obtained by acid hydrolysis of the Asp-Pro bond in the beta-chains. The comparison with human hemoglobin showed 18 substitutions in the alpha-chains and 24 in the beta-chains. In the alpha-chains one amino-acid exchange involves an alpha 1/beta 1-contact. In the beta-chains one heme contact, three alpha 1/beta 1- and one alpha 1/beta 2-contacts are substituted. A comparison with other chiropteran hemoglobin sequences shows similar distances to Micro- and Megachiroptera. The oxygenation characteristics of the composite hemolysate and the two components, measured in relation to pH, Cl-, and 2,3-bis-phosphoglycerate, are described. The effect of carbon dioxide on oxygen affinity is considerably smaller than that observed in human hemoglobin, which might be an adaptation to life under hypercapnic conditions.  相似文献   

7.
The sequence of the main hemoglobin component of the guinea pig (Cavia aerea f. porcellus, Caviidae) and that of the hemoglobin of the dromedary (Camelus dromedarius, Camelidae) is given. The sequence is obtained automatically by the sequenator using the quadrol and the propyne programme. The sequence of the alpha-and beta-chains of the guinea pig is compared with that of the human hemoglobin; the sequence of the dromedary in comparison to the Ilama shows in the alpha-chains five amino acid exchanges, in the beta-chains there are only two exchanges in beta 2 and beta 76. Beta 2 in dromedary is the P2-glycerate contact histidine. This sustains the interpretation of the high altitude respiration of the Ilama as mutation beta2His leads to Asn.  相似文献   

8.
In contrast to most other mammals, the yak, which is native to high altitudes, has two major fetal and two or four major adult hemoglobin (Hb) components. We report the oxygen affinities and sensitivities to pH and 2,3-diphosphoglycerate of the two fetal and two adult Hbs commonly found in calves, compared to those of adult cow Hb A, and relate these findings to their primary structures and to placental maternal-fetal oxygen transfer at altitude. Arranged in order of decreasing oxygen affinity the Hbs are F1 (alpha I2 gamma 2), F2 (alpha II2 gamma 2), A1 (alpha II2 beta II2), and cow Hb A. The higher affinity of the fetal than the adult yak Hbs correlates with the beta 15Trp----Phe substitution, whereas the higher affinity in yak than in cow Hb correlates with the beta 135Ala----Val substitution. The difference in oxygen affinities between yak Hbs A1 and A2, which have identical beta chains, suggests the existence of yet unknown mechanisms determining oxygen affinity. The larger Bohr effects of F2 than F1 and of A2 than A1 are attributable to alpha-chain differences, most probably the alpha I50Glu----alpha II50His substitution.  相似文献   

9.
Human hemoglobin, reacted at the four amino termini with 4-isothiocyanatobenzenesulphonic acid (Hb-ICBS), was separated into its constituent chains. Recombination of the ICBS-reacted chains with the unmodified mate chains produced the hybrid tetramers modified at either the beta or the alpha chains: alpha 2 beta 2ICBS and alpha 2ICBS beta 2. All of the modified tetramers show a reduced oxygen affinity and reduced cooperativity; furthermore the oxygen affinity of the Hb-ICBS and alpha 2 beta 2ICBS is unaffected by 2,3-bisphosphoglycerate while the oxygen affinity of alpha 2ICBS beta 2 is decreased in the presence of this organic phosphate. The oxygen affinity of Hb-ICBS and alpha 2ICBS beta 2 is independent of chloride concentration, while the alpha 2 beta 2ICBS hybrid shows a reduced response to this anion. The tetramers alpha 2ICBS beta 2 and alpha 2ICBS beta 2ICBS show a decreased alkaline Bohr effect, which can be rationalized as being due to disruption of the oxygen-linked chloride-binding sites; in the case of alpha 2 beta 2ICBS the Bohr effect is instead (partially) maintained. The functional properties of artificial tetramers have been studied also from a kinetic point of view by CO combination and the results obtained compare satisfactorily with equilibrium data. The possibility of obtaining selectively modified hemoglobins promises to provide further insight into the properties of the oxygen-linked anion-binding sites in hemoglobin.  相似文献   

10.
Hemoglobin Deer Lodge is an abnormal human hemoglobin with arginine substituted for histidine at the beta 2 position. X-ray crystallography of normal human hemoglobin has shown that the beta 2 residue is normally part of the binding site for 2,3-diphosphoglycerate. The substitution of arginine for histidine at beta 2 affects both the kinetics and equilibria of ligand binding. When stripped of anions, Hb Deer Lodge has an increased oxygen affinity and a decreased degree of cooperativity relative to Hb A. The alkaline Bohr effect is slightly increased and there are marked increases in oxygen affinity below pH 6 and above pH 8. In the presence of 2,3-diphosphoglycerate the cooperativity in increases to nromal and the pH dependence of oxygen binding is reduced. This contrasts with the enhanced Bohr effect seen for Hb A in the presence of organic phosphates. Due to enhanced anion binding at high pH, Hb Deer Lodge has a slightly lower oxygen affinity than Hb A at pH 9 in the presence of 2,3-diphosphoglycerate or inositol hexaphosphate. Kinetic studies at neutral pH in the absence of organic phosphates revealed biphasicity in the rate of oxygen dissociation from Hb Deer Lodge, while approximately linear time courses were observed for Hb A. The fast phase of the oxygen dissociation kinetics shows great pH sensitivity, and organic phosphates increase the rate and percentage of the fast phase without greatly affecting the slow phase. The two phases are not resolvable at high pH. CO combination kinetics are much like those of Hb A except that "fast" and "slow" phases were apparent at wavelengths near the deoxy-CO isobestic point. We suggest that functional differences between the alpha and beta chains are enhanced in Hb Deer Lodge. After flash photolysis of the CO derivative, the percentage of quickly reacting material was slightly greater for Hb Deer Lodge than for Hb A. This may imply a somewhat greater tendency to dissociate into high affinity subunits. The substitution of arginine for histidine at beta 2 thus results in a macromolecule whose ligand-binding properties are significantly altered, the primary differences being expressed at high pH where Hb Deer Lodge binds anions more strongly than Hb A. The properties of Hb Deer Lodge are compared to those of other hemoglobin variants with substitutions at residues involved in binding of 2,3-diphosphoglycerate.  相似文献   

11.
2,3-Bisphosphoglycerate is a physiologically important regulator of red cell oxygen affinity during mammalian development. The rat has no fetal hemoglobin, but the newborn red cell has low 2,3-bisphosphoglycerate and high ATP concentrations, and high oxygen affinity. This report shows that red cell bisphosphoglyceromutase activity increases from near zero in the newborn rat to very high levels by four weeks of age. This increase roughly parallels the increase in red cell 2,3-bisphosphoglycerate concentration. Red cell pyruvate kinase activity declines ten-fold from birth to four weeks of age. This decrease is associated with a changeover in red cell populations from larger to smaller cells. The glycolytic rate is at least 50% higher in newborn than adult rat red cells. The data suggest that high pyruvate kinase activity and glycolytic rate contribute to the high ATP concentration in newborn rat red cells, but that their low 2,3-bisphosphoglycerate concentration is due primarily to low bisphosphoglyceromutase activity.  相似文献   

12.
Naito NR  Hui HL  Noble RW  Hoffman BM 《Biochemistry》2001,40(7):2060-2065
We have compared the photoinitiated electron-transfer (ET) reaction between cytochrome b(5) (b(5)) and zinc mesoporphyrin-substituted hemoglobin [(ZnM)Hb] and Hb variants in order to determine whether b(5) binds to the subunit surface of either or both Hb chains, or to sites which span the dimer--dimer interface. Because the dimer--dimer interface would be disrupted for monomers or alpha beta dimers, we studied the reaction of b(5) with alpha ZnM chains and (ZnM)Hb beta W37E, which exists as alpha beta dimers in solution. Triplet quenching titrations of the ZnHb proteins with Fe(3+)b(5) show that the binding affinity and ET rate constants for the alpha-chains are the same when they are incorporated into a Hb tetramer or dimer, or exist as monomers. Likewise, the parameters for beta-chains in tetramers and dimers differ minimally. In parallel, we have modified the surface of the Hb chains by neutralizing the heme propionates through the preparation of zinc deuterioporphyrin dimethyl ester hemoglobin, (ZnD-DME)Hb. The charge neutralization increases the ET rate constants 100-fold for the alpha-chains and 40-fold for the beta-chains (but has has little effect on the affinity of either chain type for b(5), similar to earlier results for myoglobin). Together, these results indicate that b(5) binds to sites at the subunit surface of each chain rather than to sites which span the dimer-dimer interface. The charge-neutralization results further suggest that b(5) binds over a broad area of the subunit face, but reacts only in a minority population of binding geometries.  相似文献   

13.
A new abnormal hemoglobin, Hb Kariya [alpha 40 (C5) Lys leads to Glu], with an amino acid substitution at the alpha 1 beta 2 contact was discovered in a young Japanese man. This variant migrated to the anode faster than Hb A, being nearly the same as Hb I in electrophoretic mobility. It amounted to about 6% of the total hemoglobin of the hemolysate. This hemoglobin showed an increased oxygen affinity, decreased heme-heme interaction and a lowered 2,3-DPG effect.  相似文献   

14.
In Hb Warsaw Val replaces the Phe normally present at the heme contact position beta 42 (CD1). This variant is unstable, and it readily undergoes methemoglobin formation. In DEAE-cellulose chromatography, the variant hemoglobin co-eluted with Hb A; a partially heme-depleted fraction of the variant, representing 5-6% of the total hemoglobin, eluted separately and in pure form. The heme replete form of Hb Warsaw exhibited decreased oxygen affinity with a normal Bohr effect and normal cooperativity and interaction with 2,3-diphosphoglycerate (DPG). The heme-depleted Hb Warsaw had a higher oxygen affinity than that of Hb A, decreased cooperativity and 2,3-DPG interaction, and a very low alkaline Bohr effect. Gel filtration of the heme-depleted form showed it to exist entirely as alpha beta dimers. Globin chain synthesis by Hb Warsaw-containing reticulocytes followed a balanced alpha/beta ratio. In short-term synthesis experiments, a major portion of incorporated radiolabeled L-leucine was recovered from the dimeric, heme-depleted Hb Warsaw fraction, suggesting that subunit association precedes the incorporation of heme into the beta subunits in the post-synthetic assembly of this hemoglobin. Structural analysis of deoxyhemoglobin containing roughly equal proportions of normal and variant beta chains showed that the replacement leaves a cavity next to the heme that is large enough to hold a water molecule, which may account for the instability of Hb Warsaw. The heme and the pyrrol nearest to ValCD1 tilt into the cavity. The resulting increase in the tilt of the proximal histidine relative to the heme plane, coupled with a possible stretching of the Fe-N epsilon bond may account for the low oxygen affinity.  相似文献   

15.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

16.
The equilibrium oxygen-binding properties of hemoglobins from reindeer (Rangifer tarandus tarandus), musk ox (Ovibos muschatos) and a bat (Rousettus aegyptiacus) have been investigated with special reference to the effect of heterotrophic ligands such as chloride and 2,3-bisphosphoglycerate [Gri(2,3)P2]. The results obtained with hemoglobins from reindeer and musk ox indicate that their low oxygen affinity and their insensitivity to Gri(2,3)P2 are not only an intrinsic property of the molecule, as proposed in the case of ruminant hemoglobins, but also the results of the interplay between chloride and Gri(2,3)P2 interactions. In other words, insensitivity of reindeer and musk ox hemoglobins to Gri(2,3)P2 is mainly due to a decreased affinity constant for this cofactor and to an increased affinity constant for chloride anions; this renders more effective the competition of chloride for th anion-binding site. On the other hand bat hemoglobin behaves in a completely different way and could be regarded as a type case of low-affinity hemoglobin since its functional properties are modulated neither by chloride nor by Gri(2,3)P2. The results are discussed in the light of the amino acid residues which are known to be involved in the binding of organic phosphates.  相似文献   

17.
The primary structure of the alpha- and beta-chains of hemoglobin from spotted hyena (Crocuta crocuta, Hyenidae) is presented. The structure-function relationship is discussed. The separation of the chains directly from hemoglobin was performed by RP-HPLC. After tryptic digestion of the chains, the peptides were isolated by RP-HPLC. Amino-acid sequences were determined by Edman degradation in liquid- and gas-phase sequencers. The alignment of the tryptic peptides was made by homology with human and other Carnivora hemoglobins. The hemoglobin from spotted hyena (Crocuta crocuta) exhibits in its alpha- and beta-chains 22 and 20 exchanges, respectively, compared to human hemoglobin. In the alpha-chains, two alpha 1 beta 1-contacts are exchanged. In the beta-chains five exchanges involve one alpha 1 beta 1-contact, one alpha 1 beta 2-contact, one heme contact, and two 2,3-DPG-binding sites.  相似文献   

18.
Increased homotropic allosteric effect, while maintaining normal heterotropic effects, was observed in hemoglobin Loire. The oxygen binding curves, at equilibrium, and the kinetic measurements demonstrated that the substitution of alpha 88(F9) Ala for a Ser results in increased oxygen affinity and decreased n50 value. The function of the residues involved in the Bohr effect or in the regulation by 2,3-bisphosphoglycerate is not altered. The effects of bezafibrate, which binds specifically to the alpha chains, was similar to that observed in Hb A. The functional properties of Hb Loire may be explained by a slight displacement of some key residues of the C-terminal region of the alpha chain destabilizing the T structure.  相似文献   

19.
Red blood cells of adult Western Painted Turtles (Chrysemys picta bellii) contain two hemoglobin components: HbA (alpha A2 beta 2) and HbD (alpha D2 beta 2). We present the complete amino-acid sequences of the alpha A-chains from the major component and of the beta-chains common to both components. Structural features are discussed with respect to the animals extreme tolerance of severe hypoxic conditions during hibernation which is accompanied by a high oxygen affinity of the hemoglobin. The strong ATP dependence of Western Painted Turtle hemoglobin oxygen affinity is contrasted by the loss of one ATP-binding site, beta 143(H21)-Arg----Leu. The primary structure of the beta-chains excludes an allosteric control mechanism by hydrogencarbonate as it was found in crocodiles. Except in turtles a hemoglobin pattern with HbA and HbD sharing the same beta-subunits has been found only in birds. In comparison to other vertebrate hemoglobins there is a surprising similarity of the sequences to those of bird hemoglobins. alpha A- as well as alpha D-chains show larger homologies to chains of the same type in different species than alpha A- and alpha D-chains to each other in the same species. This indicates a duplication of the alpha-gene preceding the divergence of turtles and birds.  相似文献   

20.
This study examines the structural and functional effects of amino acid substitutions in the distal side of both the alpha- and beta-chain heme pockets of human normal adult hemoglobin (Hb A). Using our Escherichia coli expression system, we have constructed four recombinant hemoglobins: rHb(alphaL29F), rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W). The alpha29 and beta28 residues are located in the B10 helix of the alpha- and beta-chains of Hb A, respectively. The B10 helix is significant because of its proximity to the ligand-binding site. Previous work showed the ability of the L29F mutation to inhibit oxidation. rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) exhibit very low oxygen affinity and reduced cooperativity compared to those of Hb A, while the previously studied rHb(alphaL29F) exhibits high oxygen affinity. Proton nuclear magnetic resonance spectroscopy indicates that these mutations in the B10 helix do not significantly perturb the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces, while as expected, the tertiary structures near the heme pockets are affected. Experiments in which visible spectrophotometry was utilized reveal that rHb(alphaL29F) has equivalent or slower rates of autoxidation and azide-induced oxidation than does Hb A, while rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) have increased rates. Bimolecular rate constants for NO-induced oxidation have been determined using a stopped-flow apparatus. These findings indicate that amino acid residues in the B10 helix of the alpha- and beta-chains can play different roles in regulating the functional properties and stability of the hemoglobin molecule. These results may provide new insights for designing a new generation of hemoglobin-based oxygen carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号